深度学习100问9-什么是word2vec模型

Word2vec 模型是一种用于将词语转换为向量表示的工具。

想象一下,我们有很多很多的词语,就像一个个不同的小盒子。Word2vec 模型的作用就是给每个小盒子都找到一个对应的位置,这个位置用一个向量来表示。这样,意思相近的词语在这个"向量空间"里就会离得比较近。

比如"猫"和"狗",因为它们都是宠物,所以在 Word2vec 生成的向量空间中,它们对应的向量距离就会比较近。而"猫"和"飞机",因为它们毫无关系,所以对应的向量距离就会很远。

Word2vec 模型有两种主要的训练方法,Skip-gram 和 Continuous Bag of Words(CBOW)。Skip-gram 是通过中心词来预测周围的词,CBOW 则是通过周围的词来预测中心词。通过大量的文本数据进行训练后,Word2vec 可以得到高质量的词向量,这些词向量可以用于很多自然语言处理任务,比如文本分类、情感分析、机器翻译等。

相关推荐
向量引擎小橙1 分钟前
智能体“组团”时代:通信协议标准化如何颠覆未来协作模式?
大数据·人工智能·深度学习·集成学习
老吴学AI5 分钟前
系列报告十二:(HAI) What workers really want from AI?
人工智能
喜欢吃豆5 分钟前
LangChain 架构深度解析:从中间件机制到人机协同 SQL 智能体实战报告
人工智能·中间件·架构·langchain·大模型
Mintopia6 分钟前
如何结合 AI,为未来社交群体构建「信任桥梁」
人工智能·react native·架构
小棠师姐9 分钟前
随机森林原理与实战:如何解决过拟合问题?
算法·机器学习·随机森林算法·python实战·过拟合解决
电商API_1800790524711 分钟前
大麦网API实战指南:关键字搜索与详情数据获取全解析
java·大数据·前端·人工智能·spring·网络爬虫
蚍蜉撼树谈何易11 分钟前
一、语音识别基础(1.1 语音特征的提取)
人工智能·语音识别
线束线缆组件品替网11 分钟前
Conxall 防水线缆在户外工控中的布线实践
运维·人工智能·汽车·电脑·材料工程·智能电视
皇族崛起18 分钟前
【视觉多模态】基于视觉AI的人物轨迹生成方案
人工智能·python·计算机视觉·图文多模态·视觉多模态
dundunmm21 分钟前
【每天一个知识点】本体论
人工智能·rag·本体论