深度学习100问9-什么是word2vec模型

Word2vec 模型是一种用于将词语转换为向量表示的工具。

想象一下,我们有很多很多的词语,就像一个个不同的小盒子。Word2vec 模型的作用就是给每个小盒子都找到一个对应的位置,这个位置用一个向量来表示。这样,意思相近的词语在这个"向量空间"里就会离得比较近。

比如"猫"和"狗",因为它们都是宠物,所以在 Word2vec 生成的向量空间中,它们对应的向量距离就会比较近。而"猫"和"飞机",因为它们毫无关系,所以对应的向量距离就会很远。

Word2vec 模型有两种主要的训练方法,Skip-gram 和 Continuous Bag of Words(CBOW)。Skip-gram 是通过中心词来预测周围的词,CBOW 则是通过周围的词来预测中心词。通过大量的文本数据进行训练后,Word2vec 可以得到高质量的词向量,这些词向量可以用于很多自然语言处理任务,比如文本分类、情感分析、机器翻译等。

相关推荐
Sxiaocai10 分钟前
使用 PyTorch 实现并训练 VGGNet 用于 MNIST 分类
pytorch·深度学习·分类
GL_Rain12 分钟前
【OpenCV】Could NOT find TIFF (missing: TIFF_LIBRARY TIFF_INCLUDE_DIR)
人工智能·opencv·计算机视觉
shansjqun16 分钟前
教学内容全覆盖:航拍杂草检测与分类
人工智能·分类·数据挖掘
狸克先生19 分钟前
如何用AI写小说(二):Gradio 超简单的网页前端交互
前端·人工智能·chatgpt·交互
肖永威31 分钟前
CentOS环境上离线安装python3及相关包
linux·运维·机器学习·centos
baiduopenmap33 分钟前
百度世界2024精选公开课:基于地图智能体的导航出行AI应用创新实践
前端·人工智能·百度地图
小任同学Alex36 分钟前
浦语提示词工程实践(LangGPT版,服务器上部署internlm2-chat-1_8b,踩坑很多才完成的详细教程,)
人工智能·自然语言处理·大模型
新加坡内哥谈技术43 分钟前
微软 Ignite 2024 大会
人工智能
江瀚视野1 小时前
Q3净利增长超预期,文心大模型调用量大增,百度未来如何分析?
人工智能
陪学1 小时前
百度遭初创企业指控抄袭,维权还是碰瓷?
人工智能·百度·面试·职场和发展·产品运营