小琳 AI 课堂:SVM支持向量机

哈喽,亲爱的小伙伴们!这里是小琳 AI 课堂😜

今天咱们要好好聊聊超级厉害的支持向量机(Support Vector Machine,SVM)👏 它在机器学习领域那可是一颗耀眼的明星✨

🎯说到技术细节,SVM 属于有监督的学习算法,既能搞定分类问题,又能处理回归问题,简直牛到不行😎 它的核心呢,就是在特征空间里拼命寻找一个超级厉害的超平面,把不同类别的样本分得清清楚楚👀 要是遇到线性可分的情况,SVM 会全力找出能让两类样本间隔达到最大的超平面,这个超平面可以用 w T x + b = 0 w^Tx + b = 0 wTx+b=0 来表示,其中 w w w 是决定超平面方向的法向量, b b b 是截距哟😜

在寻找最优超平面时,SVM 会特别关注那些离超平面最近的样本点,它们就是至关重要的支持向量啦🤗 要想找到最优的 w w w 和 b b b ,还得求解一个二次规划问题,这可不容易哟。要是碰到线性不可分的情况,SVM 就会请来核函数这位大神,把样本映射到高维空间,这样在高维空间里就线性可分啦👍

💥下面给大家说说几个关键要点哈:

  1. 间隔最大化:这绝对是 SVM 的核心原则,通过把间隔最大化,能让分类更精准,泛化能力杠杠强💪
  2. 支持向量:这些可是确定最优超平面的关键样本点,其他样本点的影响力相对小些哟😜
  3. 核函数:专门用来解决线性不可分问题的,常见的有线性核、多项式核、高斯核等等😃
  4. 求解二次规划问题:这是确定最优超平面的数学手段,得费不少心思和计算资源呢🤔

🎈再来看几个实际例子:

假设咱们有个二维数据集,里面有两种不同类别的点(红的和蓝的),想用 SVM 找出分类边界😁 经过 SVM 算法一通操作,成功找到了最优超平面,把两类点分得妥妥的,间隔也是最大的。在这个例子里,超平面附近的几个点就是支持向量哟👀 再比如说,在图像识别领域,SVM 能够大展身手,用来区分不同的物体类别。把图像的特征提取出来作为输入,SVM 就能轻松学会不同类别的差异,分类超准哒😎

📜SVM 背后的故事也特别精彩哟:

支持向量机的理论最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在 20 世纪 60 年代提出来的😃 但当时因为计算能力有限,也没有好的算法实现,所以 SVM 没能大火起来😔 等到 20 世纪 90 年代,计算机技术飞速进步,一些优化算法也出现了,SVM 这才在机器学习领域大放异彩啦😜 特别是在数据量不大、特征维度高的情况下,SVM 的表现那叫一个出色呢👏 Vapnik 他们的工作为 SVM 的发展打下了坚实基础,不仅提出了算法,还推动了机器学习理论的进步,让咱们对分类问题的理解更上一层楼👍 在实际应用中,SVM 也在不断改进和优化。研究人员一直在寻找更厉害的核函数、更快的求解算法,以及更好适应大规模数据的方法😁

总之呀,支持向量机这个强大的机器学习算法,在好多领域都取得了很棒的成果,它的理论和应用还在不断发展和完善哟💖

本期的小琳 AI 课堂就到这儿啦。

相关推荐
攻城狮7号几秒前
阶跃星辰开源NextStep-1.1图像模型:告别“鬼影”与“马赛克”?
人工智能·ai图像生成·nextstep-1.1·阶跃星辰开源模型·图像模型
_codemonster5 分钟前
BERT中的padding操作
人工智能·深度学习·bert
笙枫17 分钟前
基于AI Agent框架下的能源优化调度方案和实践 | 架构设计
人工智能·能源
杭州泽沃电子科技有限公司30 分钟前
面对风霜雨雪雷电:看在线监测如何为架空线路筑牢安全网
运维·人工智能·在线监测·智能监测
小真zzz30 分钟前
Nano Banana Pro与Banana系产品全面解析,深度集成Nano Banana Pro的编辑能力标杆
人工智能·ai·powerpoint·ppt·nano banana pro
睡醒了叭32 分钟前
图像分割-深度学习-FCN模型
人工智能·深度学习·计算机视觉
汤姆yu1 小时前
基于深度学习的摔倒检测系统
人工智能·深度学习
qq_12498707531 小时前
基于深度学习的蘑菇种类识别系统的设计与实现(源码+论文+部署+安装)
java·大数据·人工智能·深度学习·cnn·cnn算法
wp123_11 小时前
射频设计中的无磁空心电感抉择:Coilcraft A01TKLC VS 国产替代TONEVEE FTA01-2N5K
人工智能·制造
泰迪智能科技1 小时前
新疆高校大数据人工智能实验室建设案例
大数据·人工智能