NASA:亚马逊地区微气象实验(ARME)的数据

Pre-LBA Amazonian Region Micrometeorological Experiment (ARME) Data

亚马逊地区微气象实验(ARME)前的数据

简介

亚马逊地区微气象实验(ARME)数据包含有关亚马逊森林能量平衡和蒸散要素的微气象数据(气候、降水截流、微气象和土壤湿度)。四种数据类型的 ASCII 文本数据文件已压缩在一起。该实验的众多科学发现之一是,在蒸散量达到潜在速率的时期,热带雨林不会因缺乏降水而出现缺水压力(Shuttleworth,1988 年)。

ARME 数据类型包括气候(气象)、降水截获、微气象和土壤湿度。这些数据将在下文的数据说明部分进行介绍。

低纬度地区前数据集收集计划

低纬度地区前数据集收集活动致力于向低纬度地区研究界提供有关 1998 年之前 20 年间在亚马孙地区收集的现有数据的信息。这项活动的主要目标是以一致的方式汇编和记录现有的数据集,并在低地层生物群落实验开始之前提供这些数据集。

汇编的数据集包括卫星图像、微气象观测、近地面和高层大气状况、从 20 世纪 70 年代到 90 年代在一些实地试验中获得的地表生物物理和水文测量数据。 数据是在雨季和旱季的几次密集实地活动中收集的,其他时段的数据从短期密集实地活动到数年的观测数据不等,测量的时间分辨率有时为 5 分钟,有时为 1 小时。

文件 rd_flux.txt 包含从 1983 年 9 月 3 日至 1985 年 9 月 28 日的微气象数据。 其中不包括风向不利或树冠潮湿时的数据。 只包括树冠干燥时的数据。 详情见 Shuttleworth 等人(1984a)和 Shuttleworth(1988)的论文。 文件记录中的变量以 "空格分隔",采用 FORTRAN 格式(4I3,9F6.) 第 5 列至第 13 列包含变量的平均值,从第 4 列给出的时间开始计算一小时内的平均值。

变量

Column No. Description


1 Year

2 Month

3 Day

4 Hour (Local time)

5 Mean Dry bulb temperature, deg C

6 Mean Specific humidity, g/kg

7 Mean Specific humidity deficit, g/kg

8 Mean Solar radiation, W/m2

9 Mean Net radiation, W/m2

10 Mean Evaporation, W/m2

11 Mean Sensible heat flux, W/m2

12 Mean Aerodynamic resistance, s/m

13 Mean Surface resistance, s/m

代码

python 复制代码
!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ARME_898",
    cloud_hosted=True,
    bounding_box=(-180.0, -89.6, 180.0, 89.6),
    temporal=("2017-07-20", "2017-08-08"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

ARME 数据类型 下面介绍的每种数据类型的数据文件都已编译并压缩在一个单独的文件中: ARME_CLIMATE.zip ARME_INTERCEPTION.zip ARME_MICROMETEOROGY.zip ARME_SOIL_MOISTURE.zip 气候:气候数据是 1983 年 9 月至 1985 年 8 月使用自动气象站记录的。 数据是连续的,格式为 "空格划线",每小时一行(4I3,7F6)。第 5 列至第 10 列是变量的平均值,从第 4 列给出的时间开始计算。

引用

Fisch, G., J.H.C. Gash, C.A. Nobre, W.J. Shuttleworth, and ARME Team Members. 2008. Pre-LBA Amazonian Region Micrometeorological Experiment (ARME) Data. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.doi:10.3334/ORNLDAAC/898.

Marengo, J. A., and R. L. Victoria. 1998. Pre-LBA Data Sets Initiative, 3 vols. [Pre-Large-Scale Biosphere-Atmosphere Experiment in Amazonia Data Sets Initiative, 3 vols.]. CD-ROM. Centro de Previsao de Tempo e Estudios Climaticos, Instituto Nacional de Pesquisas Espaciais (CPTEC/INPE) [Center for Weather Forecasting and Climate Study, National Institute for Space Research], Sao Paulo, Brazil.

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg

相关推荐
Dream_Snowar14 分钟前
速通Python 第四节——函数
开发语言·python·算法
西猫雷婶16 分钟前
python学opencv|读取图像(十四)BGR图像和HSV图像通道拆分
开发语言·python·opencv
汪洪墩1 小时前
【Mars3d】设置backgroundImage、map.scene.skyBox、backgroundImage来回切换
开发语言·javascript·python·ecmascript·webgl·cesium
程序员shen1616112 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
人人人人一样一样2 小时前
作业Python
python
四口鲸鱼爱吃盐3 小时前
Pytorch | 利用VMI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
四口鲸鱼爱吃盐3 小时前
Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
小陈phd3 小时前
深度学习之超分辨率算法——SRCNN
python·深度学习·tensorflow·卷积
CodeClimb3 小时前
【华为OD-E卷-简单的自动曝光 100分(python、java、c++、js、c)】
java·python·华为od