吴恩达谈AI未来:Agentic Workflow、推理成本下降与开源的优势

近年来,人工智能(AI)领域的发展势如破竹,然而随着技术的普及,市场也开始出现对AI泡沫的质疑声。2024年8月,AI领域的权威专家吴恩达(Andrew Ng)在与ARK Invest的对谈中,分享了他对AI产业发展的乐观看法,并重点讨论了Agentic Workflow的未来、训练与推理成本的下降,以及开源模型的优势。本文将详细解析吴恩达的访谈内容,展望AI领域未来的发展趋势。

一、AI发展未到瓶颈,产业链才是真正挑战

首先,吴恩达针对近年来关于AI技术发展瓶颈的论调做出了回应。他指出,过去十年间,AI技术不断取得突破,大规模模型的发布一再证明了这些观点的错误。他对目前仍有人坚持"AI已遇瓶颈"感到惊讶,认为AI的技术发展仍有巨大潜力,产业的扩展空间也非常广阔。

然而,吴恩达指出,AI产业发展的挑战主要在于产业链的不完善,而非技术本身。当前,GPU的供应问题、人才不足等因素阻碍了许多潜在的AI项目落地。许多公司虽具备开发大型AI模型的能力,但由于硬件和人力资源的限制,导致项目难以顺利进行。吴恩达强调,一旦这些产业链问题得到解决,AI的落地速度将大幅提升,AI的应用潜力将得到全面释放。

二、Agentic Workflow:推动AI迭代的未来趋势

在访谈中,吴恩达特别强调了Agentic Workflow的潜力。传统的AI应用往往是一次性输入提示,然后输出结果。但吴恩达认为,这种方式并不符合人类的工作流程。与之相比,Agentic Workflow更类似于人类的写作过程,是一种反复迭代的工作模式。这种模式能够显著提升AI应用的准确性,特别是在复杂任务的执行上。

吴恩达分享了一个Agentic Workflow的实例:在一次斯坦福大学的演示中,由于网络搜索失败,Agent系统自动切换到了备用的维基百科搜索,最终确保了演示的成功。这表明Agent系统具备处理失败并自主修复的能力,而这种能力在未来有望进一步增强。

尽管如此,吴恩达也承认,Agentic Workflow目前仍面临推理速度瓶颈。AI应用往往需要反复调用模型进行推理,而这一过程耗时较长。吴恩达认为,提升推理速度将是下一波AI应用的关键。一旦推理速度大幅提高,许多应用的客户体验将显著改善,AI的广泛应用将变得更加可行。

三、训练和推理成本的下降:AI普及的关键

AI模型的训练和推理成本一直是阻碍AI普及的重要因素。吴恩达在访谈中引用了ARK Invest的报告,报告预测训练成本将每年下降75%,推理成本将每年下降86%。这一趋势将极大地推动AI技术的进一步创新和应用。随着成本的下降,越来越多的企业将能够负担得起AI技术,AI的商业化进程也将加速。

吴恩达特别强调了推理速度的重要性。他指出,在人类的阅读速度约为每秒6个token的情况下,AI需要生成和处理大量token,以适应复杂的工作任务。吴恩达认为,随着硬件技术的进步,推理速度的提升将成为未来几年内AI发展的重要推动力,这将直接影响到Agentic Workflow等应用的广泛普及。

四、MLOps与AI堆栈:推动AI持续进化

谈及MLOps(机器学习运维),吴恩达指出,这一领域在未来将发挥越来越重要的作用。MLOps不仅帮助企业更好地管理和部署AI模型,还推动了AI技术栈的不断进化。他提到,目前有许多云服务商正在开发用于编排AI模型的层次化服务,以便企业能够更高效地构建和部署AI应用。

除了MLOps,吴恩达还提到Agentic Framework这一即将出现的新框架,这个框架旨在提升AI应用的能力。虽然吴恩达没有深入探讨这一框架的具体细节,但可以预见的是,未来的AI应用将会在框架层面上得到进一步的优化,推动AI在实际场景中的应用和落地。

五、开源的力量:AI创新的驱动引擎

在讨论AI的商业模式时,吴恩达表达了对开源模型的支持。他认为,开源的力量远超闭源的短期优势,能够驱动AI技术的持续创新。Meta在Llama和PyTorch的开源项目上取得了巨大的成功,证明了开源模型的商业价值。吴恩达认为,开源不仅能够降低企业对竞争对手专有平台的依赖,还能促进整个AI生态系统的繁荣。

吴恩达对当前一些反对开源的呼声感到困惑。他认为,这种行为将会抑制全球的创新,尤其是对美国的AI产业造成负面影响。开源代表着全球技术供应链中的开放和共享文化,推动开源不仅能为企业带来商业价值,也能让世界变得更加美好。

六、结语与未来展望

通过本次访谈,吴恩达为我们展示了AI领域的广阔前景。他对Agentic Workflow、训练和推理成本的下降以及开源的推动力充满信心。虽然AI产业仍面临一些挑战,尤其是在硬件、人才和推理速度上,但吴恩达坚信,随着技术的不断进步,AI的应用前景将更加广阔。

展望未来,吴恩达乐观地认为,到2030年,AI软件市场将会达到13万亿美元的规模,AI产业将迎来新的繁荣期。对开发者和企业而言,紧跟技术趋势,优化AI应用场景,将是抓住这波AI浪潮的关键。

相关推荐
ZHOU_WUYI3 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1233 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界4 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221514 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2514 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街5 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台5 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网
加密新世界5 小时前
优化 Solana 程序
人工智能·算法·计算机视觉
hunteritself5 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
Che_Che_6 小时前
Cross-Inlining Binary Function Similarity Detection
人工智能·网络安全·gnn·二进制相似度检测