YOLOv8多种方法改进CBAM注意力机制有效提升检测精度(已跑通)

一、CBAM概念

CBAM(Convolutional Block Attention Module)是一种用于卷积神经网络(CNN)的注意力机制,旨在提高网络的表现能力。它通过引入两个注意力模块来增强特征图的表达能力。

二、源码:

python 复制代码
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu = nn.ReLU()
        self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
        max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
        out = self.sigmoid(avg_out + max_out)
        return out


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
      
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # 1*h*w
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        # 2*h*w
        x = self.conv(x)
        # 1*h*w
        return self.sigmoid(x)


class CBAM(nn.Module):
    def __init__(self, c1, c2, ratio=16, kernel_size=7):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CBAM, self).__init__()
        self.channel_attention = ChannelAttention(c1, ratio)
        self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
        out = self.channel_attention(x) * x
        # c*h*w
        # c*h*w * 1*h*w
        out = self.spatial_attention(out) * out
        return out

三、改进步骤

第一步,在ultralytics/nn/modules/conv.py文件内添加注意力源码

第二步,在ultralytics/nn/modules/init.py文件内,按下图标识的地方添加注意力名

第一处:在from .conv import()处最后,添加注意力名称

第二处:在__all__={}处最后,添加注意力名称

第三步,在ultralytics/nn/tasks.py文件内,

复制代码
首先,在from ultralytics.nn.modules import 处添加CBAM

其次,键盘点击CTRL+shift+F打开查找界面,搜索elif m in ,在该函数下方有一堆的elif m in XXX,在某一个elif下方添加如下代码

python 复制代码
        elif m in {CBAM}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]

第五步,在ultralytics/cfg/models/v8文件下,复制yolov8.yaml,并改成自己的名字(如yolov8-CBAM.yaml)

第一种修改方法,在backbone中添加CABM,因为添加了一层CABM,所以在Detect处也要相应的做出修改,如下:

运行结果:

第二张修改方法,在backbone和head中分别添加CABM,Detect处也要根据添加的层数做出相应的做出修改,如下:

运行结果:

相关推荐
AI人工智能+10 分钟前
应用俄文OCR技术,为跨语言交流与数字化管理提供更强大的支持
人工智能·ocr·文字识别
UQI-LIUWJ22 分钟前
李宏毅LLM笔记: AI Agent
人工智能·笔记
百度Geek说34 分钟前
百度阮瑜:百度大模型应用赋能产业智变|2025全球数字经济大会
人工智能
大明哥_38 分钟前
最新 Coze 教程:40+ 条视频涨粉 10W+,利用 Coze 工作流 + 视频组件,一键制作爆款小人国微景动画视频
人工智能·agent
SugarPPig1 小时前
ReAct (Reason and Act) OR 强化学习(Reinforcement Learning, RL)
人工智能
孤狼warrior1 小时前
灰色预测模型
人工智能·python·算法·数学建模
AI生存日记1 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
求职小程序华东同舟求职1 小时前
龙旗科技社招校招入职测评25年北森笔试测评题库答题攻略
大数据·人工智能·科技
李元豪1 小时前
【行云流水ai笔记】粗粒度控制:推荐CTRL、GeDi 细粒度/多属性控制:推荐TOLE、GPT-4RL
人工智能·笔记
机器学习之心1 小时前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络