YOLOv8多种方法改进CBAM注意力机制有效提升检测精度(已跑通)

一、CBAM概念

CBAM(Convolutional Block Attention Module)是一种用于卷积神经网络(CNN)的注意力机制,旨在提高网络的表现能力。它通过引入两个注意力模块来增强特征图的表达能力。

二、源码:

python 复制代码
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu = nn.ReLU()
        self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))
        max_out = self.f2(self.relu(self.f1(self.max_pool(x))))
        out = self.sigmoid(avg_out + max_out)
        return out


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
      
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # 1*h*w
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        # 2*h*w
        x = self.conv(x)
        # 1*h*w
        return self.sigmoid(x)


class CBAM(nn.Module):
    def __init__(self, c1, c2, ratio=16, kernel_size=7):  # ch_in, ch_out, number, shortcut, groups, expansion
        super(CBAM, self).__init__()
        self.channel_attention = ChannelAttention(c1, ratio)
        self.spatial_attention = SpatialAttention(kernel_size)

    def forward(self, x):
        out = self.channel_attention(x) * x
        # c*h*w
        # c*h*w * 1*h*w
        out = self.spatial_attention(out) * out
        return out

三、改进步骤

第一步,在ultralytics/nn/modules/conv.py文件内添加注意力源码

第二步,在ultralytics/nn/modules/init.py文件内,按下图标识的地方添加注意力名

第一处:在from .conv import()处最后,添加注意力名称

第二处:在__all__={}处最后,添加注意力名称

第三步,在ultralytics/nn/tasks.py文件内,

复制代码
首先,在from ultralytics.nn.modules import 处添加CBAM

其次,键盘点击CTRL+shift+F打开查找界面,搜索elif m in ,在该函数下方有一堆的elif m in XXX,在某一个elif下方添加如下代码

python 复制代码
        elif m in {CBAM}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]

第五步,在ultralytics/cfg/models/v8文件下,复制yolov8.yaml,并改成自己的名字(如yolov8-CBAM.yaml)

第一种修改方法,在backbone中添加CABM,因为添加了一层CABM,所以在Detect处也要相应的做出修改,如下:

运行结果:

第二张修改方法,在backbone和head中分别添加CABM,Detect处也要根据添加的层数做出相应的做出修改,如下:

运行结果:

相关推荐
skywalk8163几秒前
Trae 是一款由 AI 驱动的 IDE,让编程更加愉悦和高效。国际版集成了 GPT-4 和 Claude 3.5,国内版集成了DeepSeek-r1
人工智能·trae
WenGyyyL7 分钟前
使用OpenCV和MediaPipe库——驼背检测(姿态监控)
人工智能·python·opencv·算法·计算机视觉·numpy
梓羽玩Python19 分钟前
开源版Manus来了!14.7k标星的OpenManus,让AI替你全自动执行任务!
人工智能·github
广拓科技20 分钟前
中国视频生成 AI 开源潮:腾讯阿里掀技术普惠革命,重塑内容创作格局
人工智能·开源
dr李四维29 分钟前
Java在小米SU7 Ultra汽车中的技术赋能
java·人工智能·安卓·智能驾驶·互联·小米su7ultra·hdfs架构
guanshiyishi31 分钟前
ABeam 德硕 | 中国汽车市场(1)——正在推进电动化的中国汽车市场
人工智能·物联网·汽车
思茂信息31 分钟前
CST直角反射器 --- 距离多普勒(RD图), 毫米波汽车雷达ADAS
前端·人工智能·5g·汽车·无人机·软件工程
瑞瑞大大1 小时前
简单介绍下Manus功能
人工智能
小杨4041 小时前
python入门系列六(文件操作)
人工智能·python·pycharm
deephub1 小时前
Chain of Draft: 借鉴人类草稿思维让大型语言模型更快地思考
人工智能·语言模型·自然语言处理·思维链