flink 核心概念(个人总结)

flink是一个强大的分布式流处理和批处理框架,具有低延迟、容错性、高吞吐量和灵活的api优势。

在flink里面有七个核心概念。

数据流(datastream)

flink将数据视为流,无论是实时的无界数据流还是有界的数据流。

a.无界数据流:实时生成的数据流,没有结束点,例如实时交易数据

b.有界数据流:有明确开始和结束点的数据流,例如批量处理的历史数据。

转换操作(transformations)

转换操作是对数据流进行处理的计算单元,flink提供了多种内置的转换操作,例如:

  1. map: 对数据流中的每个元素应用一个转换函数
  2. flatmap:将一个元素转换为多个元素
  3. filter:基于一个条件过滤数据流中的元素
  4. KeyBy:根据指定的键将数据流中的元素分组
  5. Aggregate:对数据流中的元素进行聚合操作
  6. Window:在数据流上定义窗口,并在窗口中进行计算

状态(state)

flink支持有状态的流处理,它可以存储和访问数据流处理过程中的状态信息。

状态:在处理数据时,flink可以维护状态,这对于实现复杂逻辑如窗口操作和聚合是有必要的。

时间(state)

flink处理事件时间和摄取时间

事件时间:事件实际发生的时间

摄取时间:事件到达系统的时间

处理时间:事件被处理的时间

窗口(Window)

窗口是处理无界数据流的一种方法,它将数据流切分成有限大小的块进行处理。

1.滚动窗口:固定大小的窗口,当新的事件到达时,窗口会向前滚动。

2.滑动窗口: 窗口在数据流上滑动,可以覆盖多个时间间隔

3.会话窗口:基于事件之间的活跃期定义的窗口

容错(Fault Tolerance)

通过分布式快照机制提供容错性,它可以周期性地对状态进行快照,以便在发生故障时恢复。

1.检查点(checkpoint): flink定期创建状态和流数据的一致性快照

2.端到端容错:从数据源到数据输出的整个处理流程中,flink都能保证数据不丢失。

并行和分布(Parallelism and Distribution)

flink应用的并行度和分布性是设计时的关键考虑因素。

1.并行度:flink应用可以配置并行度,以决定任务被拆分成多少个子任务执行。

2.任务槽:flink在taskmanager中分配任务槽来执行并行任务。

相关推荐
AI营销干货站3 小时前
原圈科技AI市场舆情分析平台多维度能力评估及市场表现解析
大数据·人工智能
松果财经3 小时前
让创业更有后劲,长沙用金融铺就“成长跑道”
大数据·人工智能
Deepoch3 小时前
中国具身智能三大路径:极限挑战、柔性操作、普惠赋能,竞合共生
大数据·人工智能·物联网·机器人·具身模型·deepoc
开利网络3 小时前
从“流量”到“留量”:长效用户运营的底层逻辑
大数据·运维·人工智能·自动化·云计算
转转技术团队4 小时前
转转大数据与AI——数据治理安全打标实践
大数据·人工智能·后端
沃达德软件4 小时前
大数据治安防控中心
大数据·人工智能·信息可视化·数据挖掘·数据分析
Sinowintop4 小时前
领航自贸港新赛道:EDI 重构企业跨境业务高效增长体系
大数据·运维·服务器·edi·数据交换·国产edi·海南自贸港
TG:@yunlaoda360 云老大4 小时前
华为云国际站FunctionGraph支持哪些编程语言?
大数据·华为云·产品运营
跨境猫小妹5 小时前
跨境电商深水区:价值增长新范式,重构出海增长逻辑
大数据·人工智能·重构·产品运营·跨境电商·防关联
乐迪信息5 小时前
乐迪信息:AI摄像机识别煤矿出入井车辆数量异常检测
大数据·运维·人工智能·物联网·安全