flink 核心概念(个人总结)

flink是一个强大的分布式流处理和批处理框架,具有低延迟、容错性、高吞吐量和灵活的api优势。

在flink里面有七个核心概念。

数据流(datastream)

flink将数据视为流,无论是实时的无界数据流还是有界的数据流。

a.无界数据流:实时生成的数据流,没有结束点,例如实时交易数据

b.有界数据流:有明确开始和结束点的数据流,例如批量处理的历史数据。

转换操作(transformations)

转换操作是对数据流进行处理的计算单元,flink提供了多种内置的转换操作,例如:

  1. map: 对数据流中的每个元素应用一个转换函数
  2. flatmap:将一个元素转换为多个元素
  3. filter:基于一个条件过滤数据流中的元素
  4. KeyBy:根据指定的键将数据流中的元素分组
  5. Aggregate:对数据流中的元素进行聚合操作
  6. Window:在数据流上定义窗口,并在窗口中进行计算

状态(state)

flink支持有状态的流处理,它可以存储和访问数据流处理过程中的状态信息。

状态:在处理数据时,flink可以维护状态,这对于实现复杂逻辑如窗口操作和聚合是有必要的。

时间(state)

flink处理事件时间和摄取时间

事件时间:事件实际发生的时间

摄取时间:事件到达系统的时间

处理时间:事件被处理的时间

窗口(Window)

窗口是处理无界数据流的一种方法,它将数据流切分成有限大小的块进行处理。

1.滚动窗口:固定大小的窗口,当新的事件到达时,窗口会向前滚动。

2.滑动窗口: 窗口在数据流上滑动,可以覆盖多个时间间隔

3.会话窗口:基于事件之间的活跃期定义的窗口

容错(Fault Tolerance)

通过分布式快照机制提供容错性,它可以周期性地对状态进行快照,以便在发生故障时恢复。

1.检查点(checkpoint): flink定期创建状态和流数据的一致性快照

2.端到端容错:从数据源到数据输出的整个处理流程中,flink都能保证数据不丢失。

并行和分布(Parallelism and Distribution)

flink应用的并行度和分布性是设计时的关键考虑因素。

1.并行度:flink应用可以配置并行度,以决定任务被拆分成多少个子任务执行。

2.任务槽:flink在taskmanager中分配任务槽来执行并行任务。

相关推荐
Qspace丨轻空间23 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
Elastic 中国社区官方博客1 小时前
如何将数据从 AWS S3 导入到 Elastic Cloud - 第 3 部分:Elastic S3 连接器
大数据·elasticsearch·搜索引擎·云计算·全文检索·可用性测试·aws
Aloudata2 小时前
从Apache Atlas到Aloudata BIG,数据血缘解析有何改变?
大数据·apache·数据血缘·主动元数据·数据链路
水豚AI课代表3 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
拓端研究室TRL5 小时前
【梯度提升专题】XGBoost、Adaboost、CatBoost预测合集:抗乳腺癌药物优化、信贷风控、比特币应用|附数据代码...
大数据
黄焖鸡能干四碗6 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
编码小袁6 小时前
探索数据科学与大数据技术专业本科生的广阔就业前景
大数据
WeeJot嵌入式6 小时前
大数据治理:确保数据的可持续性和价值
大数据
zmd-zk7 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶7 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic