flink 核心概念(个人总结)

flink是一个强大的分布式流处理和批处理框架,具有低延迟、容错性、高吞吐量和灵活的api优势。

在flink里面有七个核心概念。

数据流(datastream)

flink将数据视为流,无论是实时的无界数据流还是有界的数据流。

a.无界数据流:实时生成的数据流,没有结束点,例如实时交易数据

b.有界数据流:有明确开始和结束点的数据流,例如批量处理的历史数据。

转换操作(transformations)

转换操作是对数据流进行处理的计算单元,flink提供了多种内置的转换操作,例如:

  1. map: 对数据流中的每个元素应用一个转换函数
  2. flatmap:将一个元素转换为多个元素
  3. filter:基于一个条件过滤数据流中的元素
  4. KeyBy:根据指定的键将数据流中的元素分组
  5. Aggregate:对数据流中的元素进行聚合操作
  6. Window:在数据流上定义窗口,并在窗口中进行计算

状态(state)

flink支持有状态的流处理,它可以存储和访问数据流处理过程中的状态信息。

状态:在处理数据时,flink可以维护状态,这对于实现复杂逻辑如窗口操作和聚合是有必要的。

时间(state)

flink处理事件时间和摄取时间

事件时间:事件实际发生的时间

摄取时间:事件到达系统的时间

处理时间:事件被处理的时间

窗口(Window)

窗口是处理无界数据流的一种方法,它将数据流切分成有限大小的块进行处理。

1.滚动窗口:固定大小的窗口,当新的事件到达时,窗口会向前滚动。

2.滑动窗口: 窗口在数据流上滑动,可以覆盖多个时间间隔

3.会话窗口:基于事件之间的活跃期定义的窗口

容错(Fault Tolerance)

通过分布式快照机制提供容错性,它可以周期性地对状态进行快照,以便在发生故障时恢复。

1.检查点(checkpoint): flink定期创建状态和流数据的一致性快照

2.端到端容错:从数据源到数据输出的整个处理流程中,flink都能保证数据不丢失。

并行和分布(Parallelism and Distribution)

flink应用的并行度和分布性是设计时的关键考虑因素。

1.并行度:flink应用可以配置并行度,以决定任务被拆分成多少个子任务执行。

2.任务槽:flink在taskmanager中分配任务槽来执行并行任务。

相关推荐
lili-felicity27 分钟前
CANN异步推理实战:从Stream管理到流水线优化
大数据·人工智能
2501_933670791 小时前
2026 高职大数据专业考什么证书对就业有帮助?
大数据
xiaobaibai1531 小时前
营销自动化终极形态:AdAgent 自主闭环工作流全解析
大数据·人工智能·自动化
星辰_mya1 小时前
Elasticsearch更新了分词器之后
大数据·elasticsearch·搜索引擎
xiaobaibai1531 小时前
决策引擎深度拆解:AdAgent 用 CoT+RL 实现营销自主化决策
大数据·人工智能
悟纤2 小时前
学习与专注音乐流派 (Study & Focus Music):AI 音乐创作终极指南 | Suno高级篇 | 第33篇
大数据·人工智能·深度学习·学习·suno·suno api
ESBK20252 小时前
第四届移动互联网、云计算与信息安全国际会议(MICCIS 2026)二轮征稿启动,诚邀全球学者共赴学术盛宴
大数据·网络·物联网·网络安全·云计算·密码学·信息与通信
Elastic 中国社区官方博客2 小时前
Elasticsearch:Workflows 介绍 - 9.3
大数据·数据库·人工智能·elasticsearch·ai·全文检索
B站_计算机毕业设计之家2 小时前
豆瓣电影推荐系统 | Python Django Echarts构建个性化影视推荐平台 大数据 毕业设计源码 (建议收藏)✅
大数据·python·机器学习·django·毕业设计·echarts·推荐算法
莽撞的大地瓜2 小时前
洞察,始于一目了然——让舆情数据自己“说话”
大数据·网络·数据分析