TensorBoard快速入门

一、简介

TensorBoard是一套 Web 应用程序,用于检查和了解 TensorFlow 运行和图形。简而言之,就是用于机器学习可视化的工具

TensorBoard 设计为完全离线运行,++无需任何 Internet 访问权限++。例如,这可能位于本地计算机上、公司防火墙后面或数据中心中。

二、安装

在Pycharm的Terminal中直接使用pip安装即可。

python 复制代码
pip install tensorboard ==2.12.0

注意:此处安装的TensorBoard版本我自行设定为2.12.0版。因为在此前运用最新版显示图象时出现了TypeError报错,这就是由于版本过高导致,所以为了避免该错误,建议最好下载较低版本的TensorBoard

安装显示Successful就表明安装成功。

三、运行

TensorBoard的运行界面不在Pycharm中,而是通过Pycharm运行生成一个Internet访问地址,通过点击该地址或者在网页中输入地址从而进入TensorBoard界面。

python 复制代码
tensorboard --logdir=my_log

my_log代指TensorBoard的log文件所在的目录。Tensorboard面板中展示的数据都来源于log文件,一般一次完整的运行生成一份log文件

在Pytorch中,实现可视化,需要创建一个SummaryWriter对象,在创建该对象的时候就会创建一个log文件(文件名自行定义),然后调用add_something方法,在log中写日志,然后展示在TensorBoard界面中。

如看到以下输出,则表明运行成功

python 复制代码
TensorBoard 2.12.0 at http://localhost:6006/ (Press CTRL+C to quit)

点击网址http://localhost:6006/即可进入TensorBoard界面。

此外该网址的端口默认为6006,但是也可以通过port设置别的端口。

python 复制代码
tensorboard --logdir=my_log --port=6009

四、具体使用

复制代码
SummaryWriter:创建log文件,文件名自定义
add_something:向log文件中添加数据,如可以通过add_imge添加图片
close:训练结束后,通过close方法结束log写入

**案例:**运用TensorBoard展示图片

① 导包
python 复制代码
from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as np
复制代码
②创建SummaryWriter对象
python 复制代码
writer = SummaryWriter("logs")
writer.close()

创建对象后,立马写上close,以免忘记

③添加本地图片数据
python 复制代码
img_path = "data/train/ants_image/0013035.jpg"  #图片的相对地址
img_PIL = Image.open(img_path) #根据图片的相对地址获取图片--PIL.JpegImagePlugin.JpegImageFile--不符合add_imge参数类型
img_array = np.array(img_PIL)#将该图片转换为numpy.ndarray类型使用
writer.add_image("train", img_array, 0,dataformats='HWC')#global_step表示步骤,如果为同一个tag,那么该参数表示第几个图片

使用API时要注意其参数类型,不同API内对所含参数类型不同,建议通过ctrl+双击该API查看其具体使用方法。

④运行程序

运行该程序后,在Pycharm的Terminal中调取TensorBoard界面。

点击网页,进入TensorBoard界面,图片即可展示成功。

⑤关闭运行

点击ctrl+c即可关闭程序运行

相关推荐
小oo呆3 分钟前
【学习心得】Python好库推荐——pipx
linux·开发语言·python
smile_Iris4 分钟前
Day 28 元组和OS模块
python·机器学习
AI科技星19 分钟前
时空运动的几何约束:张祥前统一场论中圆柱螺旋运动光速不变性的严格数学证明与物理诠释
服务器·数据结构·人工智能·python·科技·算法·生活
All The Way North-23 分钟前
PyTorch SmoothL1Loss 全面解析:数学定义、梯度推导、API 规范与 logits 误用纠正
pytorch·深度学习·机器学习·smooth l1损失函数·回归损失函数
AIsdhuang25 分钟前
2025 AI培训权威榜:深度评测与趋势前瞻
人工智能·python·物联网
m0_7269659828 分钟前
RAG小实战
开发语言·python
只与明月听32 分钟前
FastAPI入门实战
前端·后端·python
无心水43 分钟前
【Python实战进阶】12、Python面向对象编程实战:从零构建搜索引擎,掌握封装、继承与多态!
开发语言·python·搜索引擎·python进阶·python面向对象·搜索引擎实战·封装继承多态
mortimer43 分钟前
Python + FFmpeg 视频自动化处理指南:从硬件加速到精确剪辑
python·ffmpeg·音视频开发
帅得不敢出门1 小时前
Android8 Framework实现Ntp服务器多域名轮询同步时间
android·java·服务器·python·framework·github