神经网络——优化器

1.优化器介绍:

优化器集中在torch.optim中。

  • Constructing it
python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • Taking an optimization step
python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2.代码实战:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()

optim=torch.optim.SGD(tudui.parameters(),lr=0.01)

for epoch in range(20):
    running_loss=0.0
    for data in dataloader:
        imgs,targets = data
        outputs =tudui(imgs)
        result_loss=loss(outputs,targets)
        #清零
        optim.zero_grad()
        result_loss.backward()
        #调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

后面loss又升高,为反向优化

3.总结:

优化器的基本使用

  • 如果要知道各个优化器的详细用法
  • 需要对其有一定了解
  • 注意要多训练几轮
相关推荐
2501_941225682 分钟前
人工智能与自然语言处理技术在智能客服与用户体验优化中的创新应用研究
人工智能·自然语言处理·ux
万悉科技7 分钟前
万悉科技GEO专题分享会——共探AI时代中国出海企业的流量新机遇
人工智能·科技
Mxsoft61919 分钟前
电力系统基于知识蒸馏的轻量化智能运维模型部署与边缘计算集成
运维·人工智能·边缘计算
2501_9411481524 分钟前
边缘计算与物联网技术在智能交通与城市管理优化中的创新应用研究
人工智能·边缘计算
ModestCoder_24 分钟前
Tokenization的演进:从NLP基石到多模态AI的“通用翻译器”
开发语言·人工智能·自然语言处理·机器人·具身智能
霍格沃兹测试开发学社测试人社区25 分钟前
揭开帷幕:如何实现UI回归测试的全面自主化
人工智能·ui·自动化
原来是好奇心31 分钟前
Spring AI 入门实战:快速构建智能 Spring Boot 应用
人工智能·spring boot·spring
xuehaikj1 小时前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
2501_941146321 小时前
物联网与边缘计算在智能农业监测与精准种植系统中的创新应用研究
人工智能·物联网·边缘计算
Mintopia1 小时前
🛰️ 低带宽环境下的 AIGC 内容传输优化技术
前端·人工智能·trae