神经网络——优化器

1.优化器介绍:

优化器集中在torch.optim中。

  • Constructing it
python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • Taking an optimization step
python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2.代码实战:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()

optim=torch.optim.SGD(tudui.parameters(),lr=0.01)

for epoch in range(20):
    running_loss=0.0
    for data in dataloader:
        imgs,targets = data
        outputs =tudui(imgs)
        result_loss=loss(outputs,targets)
        #清零
        optim.zero_grad()
        result_loss.backward()
        #调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

后面loss又升高,为反向优化

3.总结:

优化器的基本使用

  • 如果要知道各个优化器的详细用法
  • 需要对其有一定了解
  • 注意要多训练几轮
相关推荐
B站计算机毕业设计超人29 分钟前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条34 分钟前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客38 分钟前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon41 分钟前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
游客52043 分钟前
opencv中的常用的100个API
图像处理·人工智能·python·opencv·计算机视觉
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
Ven%1 小时前
如何在防火墙上指定ip访问服务器上任何端口呢
linux·服务器·网络·深度学习·tcp/ip
凡人的AI工具箱1 小时前
每天40分玩转Django:Django国际化
数据库·人工智能·后端·python·django·sqlite
IT猿手1 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
咸鱼桨2 小时前
《庐山派从入门到...》PWM板载蜂鸣器
人工智能·windows·python·k230·庐山派