神经网络——优化器

1.优化器介绍:

优化器集中在torch.optim中。

  • Constructing it
python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • Taking an optimization step
python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2.代码实战:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()

optim=torch.optim.SGD(tudui.parameters(),lr=0.01)

for epoch in range(20):
    running_loss=0.0
    for data in dataloader:
        imgs,targets = data
        outputs =tudui(imgs)
        result_loss=loss(outputs,targets)
        #清零
        optim.zero_grad()
        result_loss.backward()
        #调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

后面loss又升高,为反向优化

3.总结:

优化器的基本使用

  • 如果要知道各个优化器的详细用法
  • 需要对其有一定了解
  • 注意要多训练几轮
相关推荐
vlln4 分钟前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
GiantGo14 分钟前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化
栗克30 分钟前
Halcon 图像预处理②
人工智能·计算机视觉·halcon
互联网全栈架构1 小时前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_465215791 小时前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_2 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程
小Q小Q3 小时前
cmake编译LASzip和LAStools
人工智能·计算机视觉
yzx9910133 小时前
基于 Q-Learning 算法和 CNN 的强化学习实现方案
人工智能·算法·cnn
token-go4 小时前
[特殊字符] 革命性AI提示词优化平台正式开源!
人工智能·开源
cooldream20094 小时前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify