1.优化器介绍:
优化器集中在torch.optim中。
- Constructing it
python
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
- Taking an optimization step
python
for input, target in dataset:
optimizer.zero_grad()
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()
2.代码实战:
python
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1=Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self, x):
x=self.model1(x)
return x
loss=nn.CrossEntropyLoss()
tudui=Tudui()
optim=torch.optim.SGD(tudui.parameters(),lr=0.01)
for epoch in range(20):
running_loss=0.0
for data in dataloader:
imgs,targets = data
outputs =tudui(imgs)
result_loss=loss(outputs,targets)
#清零
optim.zero_grad()
result_loss.backward()
#调优
optim.step()
running_loss=running_loss+result_loss
print(running_loss)
后面loss又升高,为反向优化
3.总结:
优化器的基本使用
- 如果要知道各个优化器的详细用法
- 需要对其有一定了解
- 注意要多训练几轮