神经网络——优化器

1.优化器介绍:

优化器集中在torch.optim中。

  • Constructing it
python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • Taking an optimization step
python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2.代码实战:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()

optim=torch.optim.SGD(tudui.parameters(),lr=0.01)

for epoch in range(20):
    running_loss=0.0
    for data in dataloader:
        imgs,targets = data
        outputs =tudui(imgs)
        result_loss=loss(outputs,targets)
        #清零
        optim.zero_grad()
        result_loss.backward()
        #调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

后面loss又升高,为反向优化

3.总结:

优化器的基本使用

  • 如果要知道各个优化器的详细用法
  • 需要对其有一定了解
  • 注意要多训练几轮
相关推荐
通往曙光的路上10 分钟前
国庆回来的css
人工智能·python·tensorflow
算家计算1 小时前
国产大模型问鼎全球:混元图像3.0登顶文生图榜单的启示
人工智能·开源·资讯
Rock_yzh1 小时前
AI学习日记——神经网络参数的更新
人工智能·python·深度学习·神经网络·学习
wa的一声哭了2 小时前
Stanford CS336 assignment1 | Transformer Language Model Architecture
人工智能·pytorch·python·深度学习·神经网络·语言模型·transformer
haidizym2 小时前
ssc-FinLLM 金融大模型 相关链接
人工智能·算法
cxr8282 小时前
AI智能体赋能文化传承与创新领域:社群身份认同的数字空间重构与文化融合策略
大数据·人工智能·重构·提示词工程·ai赋能
常州晟凯电子科技2 小时前
海思SS626开发笔记之环境搭建和SDK编译
人工智能·笔记·嵌入式硬件·物联网
Apifox.3 小时前
Apifox 9 月更新| AI 生成接口测试用例、在线文档调试能力全面升级、内置更多 HTTP 状态码、支持将目录转换为模块
前端·人工智能·后端·http·ai·测试用例·postman
武子康3 小时前
AI-调查研究-95-具身智能 机器人场景测试全解析:从极端环境仿真到自动化故障注入
人工智能·深度学习·机器学习·ai·机器人·自动化·具身智能