神经网络——优化器

1.优化器介绍:

优化器集中在torch.optim中。

  • Constructing it
python 复制代码
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([var1, var2], lr=0.0001)
  • Taking an optimization step
python 复制代码
for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

2.代码实战:

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("data",train=False,transform=torchvision.transforms.ToTensor(),
                                     download=True)

#每个批次中加载的数据项数量
dataloader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self, x):
        x=self.model1(x)
        return x

loss=nn.CrossEntropyLoss()
tudui=Tudui()

optim=torch.optim.SGD(tudui.parameters(),lr=0.01)

for epoch in range(20):
    running_loss=0.0
    for data in dataloader:
        imgs,targets = data
        outputs =tudui(imgs)
        result_loss=loss(outputs,targets)
        #清零
        optim.zero_grad()
        result_loss.backward()
        #调优
        optim.step()
        running_loss=running_loss+result_loss
    print(running_loss)

后面loss又升高,为反向优化

3.总结:

优化器的基本使用

  • 如果要知道各个优化器的详细用法
  • 需要对其有一定了解
  • 注意要多训练几轮
相关推荐
架构师李哲几秒前
让智能家居“听懂人话”:我用4B模型+万条数据,教会了它理解复杂指令
深度学习·aigc
CoovallyAIHub19 分钟前
是什么支撑L3自动驾驶落地?读懂AI驾驶与碰撞预测
深度学习·算法·计算机视觉
古城小栈20 分钟前
雾计算架构:边缘-云端协同的分布式 AI 推理
人工智能·分布式·架构
JoannaJuanCV21 分钟前
自动驾驶—CARLA仿真(7)vehicle_physics demo
人工智能·机器学习·自动驾驶
Allen正心正念202527 分钟前
AWS专家Greg Coquillo提出的 6种LLM ORCHESTRATION PATTERNS解析
人工智能·架构
每日学点SEO29 分钟前
「网站新页面冲进前10名成功率下降69%」:2025 年SEO竞争格局分析
大数据·数据库·人工智能·搜索引擎·chatgpt
HalvmånEver36 分钟前
AI 工具实战测评:从技术性能到场景落地的全方位解析
人工智能·ai
碧海银沙音频科技研究院1 小时前
论文写作word插入公式显示灰色解决办法
人工智能·深度学习·算法
O561 6O623O7 安徽正华露1 小时前
露,AI人工智能Barnes迷宫 AI人工智能自动记录水迷宫
人工智能
十铭忘1 小时前
SAM2跟踪的理解6——mask decoder
人工智能·计算机视觉