通过微调预训练模型得到自己的模型

通过微调预训练模型得到自己的模型

目录

  1. 简介
  2. 环境准备
  3. 数据准备
  4. 加载预训练模型和Tokenizer
  5. 数据预处理
  6. 设置训练参数
  7. 初始化Trainer并开始训练
  8. 评估和保存模型
  9. 总结

简介

在这篇博客中,我们将介绍如何通过预训练模型进行微调来得到自己的模型。我们将使用Hugging Face的Transformers库和一个BART模型进行示例演示。整个过程包括环境准备、数据准备、模型加载、数据预处理、训练参数设置、训练、评估和保存模型。

环境准备

首先,我们需要安装必要的Python库:

bash 复制代码
pip install transformers datasets torch

数据准备

假设我们有三个数据集:训练集、验证集和测试集,分别存储在JSON文件中。我们将这些数据集加载到内存中。

python 复制代码
import os
from datasets import load_dataset

train_data_name = 'train_data'
valid_data_name = 'valid_data'
test_data_name = 'test_data'

# 顶级数据目录
top_data_dir = '../../data/sql'

raw_data_dir = os.path.join(top_data_dir, 'raw_data/')
train_raw_data_path = os.path.join(raw_data_dir, f'{train_data_name}.json')
valid_raw_data_path = os.path.join(raw_data_dir, f'{valid_data_name}.json')
test_raw_data_path = os.path.join(raw_data_dir, f'{test_data_name}.json')

# 加载JSON数据集,忽略无法解码的字符
dataset = load_dataset('json', data_files={
    'train': train_raw_data_path,
    'validation': valid_raw_data_path,
    'test': test_raw_data_path
})

加载预训练模型和Tokenizer

我们将使用Hugging Face的Transformers库加载预训练的BART模型和对应的Tokenizer。

python 复制代码
from transformers import AutoTokenizer, BartForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("./bart-base")
model = BartForConditionalGeneration.from_pretrained("./bart-base").to(device)

数据预处理

定义数据预处理函数,将输入和目标文本进行tokenize,并确保长度一致。

python 复制代码
def preprocess_function(examples):
    inputs = examples['code']
    targets = examples['text']

    # 使用 `max_length` 和 `padding` 确保一致的长度
    model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding='max_length')
    labels = tokenizer(text_target=targets, max_length=512, truncation=True, padding='max_length')

    model_inputs['labels'] = labels['input_ids']
    return model_inputs

# 应用预处理函数到训练集和验证集
tokenized_datasets = dataset.map(preprocess_function, batched=True)

设置训练参数

设置训练参数,包括输出目录、批量大小、训练轮数等。

python 复制代码
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',          # 输出结果的目录
    evaluation_strategy="epoch",     # 每个epoch进行一次评估
    per_device_train_batch_size=4,   # 每个设备的训练批量大小
    per_device_eval_batch_size=4,    # 每个设备的评估批量大小
    num_train_epochs=3,              # 训练的epoch数量
    save_strategy="epoch",           # 保存策略
    logging_dir='./logs',            # 日志目录
    logging_steps=10,                # 日志记录的步数
    no_cuda=False,                   # 强制使用CPU
    learning_rate=5e-5,              # 调整学习率
    gradient_accumulation_steps=8,   # 梯度累

初始化trainer并开始训练

python 复制代码
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets['train'],
    eval_dataset=tokenized_datasets['validation'],
)
trainer.train()

评估保存模型

python 复制代码
results = trainer.evaluate(eval_dataset=tokenized_datasets['validation'])
print(f"Validation Results: {results}")

model.save_pretrained('./trained_model')
tokenizer.save_pretrained('./trained_model')
相关推荐
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
带娃的IT创业者3 小时前
机器学习实战(6):支持向量机(SVM)——强大的非线性分类器
算法·机器学习·支持向量机
木觞清4 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
wyg_0311137 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO8 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
盼小辉丶8 小时前
TensorFlow深度学习实战(8)——卷积神经网络
深度学习·cnn·tensorflow
南风过闲庭8 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标
MYT_flyflyfly9 小时前
计算机视觉-尺度不变区域
人工智能·计算机视觉