通过微调预训练模型得到自己的模型

通过微调预训练模型得到自己的模型

目录

  1. 简介
  2. 环境准备
  3. 数据准备
  4. 加载预训练模型和Tokenizer
  5. 数据预处理
  6. 设置训练参数
  7. 初始化Trainer并开始训练
  8. 评估和保存模型
  9. 总结

简介

在这篇博客中,我们将介绍如何通过预训练模型进行微调来得到自己的模型。我们将使用Hugging Face的Transformers库和一个BART模型进行示例演示。整个过程包括环境准备、数据准备、模型加载、数据预处理、训练参数设置、训练、评估和保存模型。

环境准备

首先,我们需要安装必要的Python库:

bash 复制代码
pip install transformers datasets torch

数据准备

假设我们有三个数据集:训练集、验证集和测试集,分别存储在JSON文件中。我们将这些数据集加载到内存中。

python 复制代码
import os
from datasets import load_dataset

train_data_name = 'train_data'
valid_data_name = 'valid_data'
test_data_name = 'test_data'

# 顶级数据目录
top_data_dir = '../../data/sql'

raw_data_dir = os.path.join(top_data_dir, 'raw_data/')
train_raw_data_path = os.path.join(raw_data_dir, f'{train_data_name}.json')
valid_raw_data_path = os.path.join(raw_data_dir, f'{valid_data_name}.json')
test_raw_data_path = os.path.join(raw_data_dir, f'{test_data_name}.json')

# 加载JSON数据集,忽略无法解码的字符
dataset = load_dataset('json', data_files={
    'train': train_raw_data_path,
    'validation': valid_raw_data_path,
    'test': test_raw_data_path
})

加载预训练模型和Tokenizer

我们将使用Hugging Face的Transformers库加载预训练的BART模型和对应的Tokenizer。

python 复制代码
from transformers import AutoTokenizer, BartForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained("./bart-base")
model = BartForConditionalGeneration.from_pretrained("./bart-base").to(device)

数据预处理

定义数据预处理函数,将输入和目标文本进行tokenize,并确保长度一致。

python 复制代码
def preprocess_function(examples):
    inputs = examples['code']
    targets = examples['text']

    # 使用 `max_length` 和 `padding` 确保一致的长度
    model_inputs = tokenizer(inputs, max_length=512, truncation=True, padding='max_length')
    labels = tokenizer(text_target=targets, max_length=512, truncation=True, padding='max_length')

    model_inputs['labels'] = labels['input_ids']
    return model_inputs

# 应用预处理函数到训练集和验证集
tokenized_datasets = dataset.map(preprocess_function, batched=True)

设置训练参数

设置训练参数,包括输出目录、批量大小、训练轮数等。

python 复制代码
from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir='./results',          # 输出结果的目录
    evaluation_strategy="epoch",     # 每个epoch进行一次评估
    per_device_train_batch_size=4,   # 每个设备的训练批量大小
    per_device_eval_batch_size=4,    # 每个设备的评估批量大小
    num_train_epochs=3,              # 训练的epoch数量
    save_strategy="epoch",           # 保存策略
    logging_dir='./logs',            # 日志目录
    logging_steps=10,                # 日志记录的步数
    no_cuda=False,                   # 强制使用CPU
    learning_rate=5e-5,              # 调整学习率
    gradient_accumulation_steps=8,   # 梯度累

初始化trainer并开始训练

python 复制代码
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets['train'],
    eval_dataset=tokenized_datasets['validation'],
)
trainer.train()

评估保存模型

python 复制代码
results = trainer.evaluate(eval_dataset=tokenized_datasets['validation'])
print(f"Validation Results: {results}")

model.save_pretrained('./trained_model')
tokenizer.save_pretrained('./trained_model')
相关推荐
Elastic 中国社区官方博客21 小时前
使用 LangGraph.js 和 Elasticsearch 构建一个金融 AI 搜索工作流
大数据·人工智能·elasticsearch·搜索引擎·ai·金融·全文检索
陈 洪 伟21 小时前
Transformer彻底剖析(1):GPT中的Transformer架构
gpt·深度学习·transformer
endcy201621 小时前
多路召回之-PGSQL的关键词检索分词插件安装
人工智能·ai·postgresql
bulingg21 小时前
bert常见的变体
人工智能·深度学习·bert
大千AI助手21 小时前
惰性学习:延迟决策的机器学习范式
人工智能·机器学习·大千ai助手·惰性学习·懒惰学习·lazy learning·基于记忆的学习
南极星100521 小时前
OPENCV(python)——初学之路(十三)分水岭算法的图像切割
人工智能·opencv·计算机视觉
Aspect of twilight1 天前
各种attention的变体:MHA,GQA,MQA,MLA(DeepSeek-V2)详解
人工智能·attention
彼岸花开了吗1 天前
构建AI智能体:四十五、从专用插件到通用协议:MCP如何重新定义AI工具生态
人工智能·python·mcp
tangdou3690986551 天前
AI真好玩系列-Three.js手势控制游戏开发教程 | Interactive Game Development with Three.js Hand Con
前端·人工智能·ai编程
StableAndCalm1 天前
什么是cuda
人工智能