N10 - NLP中的注意力机制


目录

  • [1. 注意力机制是什么](#1. 注意力机制是什么)
  • [2. 注意力实现步骤](#2. 注意力实现步骤)
    • [0. 准备隐藏状态](#0. 准备隐藏状态)
    • [1. 获取每个编码器隐藏状态的分数](#1. 获取每个编码器隐藏状态的分数)
    • [2. 通过softmax层运行所有分数](#2. 通过softmax层运行所有分数)
    • [3. 通过softmax得分将每个编码器的隐藏状态相乘](#3. 通过softmax得分将每个编码器的隐藏状态相乘)
    • [4. 向量求和](#4. 向量求和)
    • [5. 将上下文向量输入编码器](#5. 将上下文向量输入编码器)
    • 最后来一个总的动图
  • 总结与心得体会

1. 注意力机制是什么

在上节的seq2seq框架中,让两个循环神经网络(RNN)构成了 编码器-解码器 结构。其中编码器逐个读取输入词,获得固定维度的向量表示,然后解码器基于这些输入逐个提取输出词。

上面的结构的问题在于,解码器从编码器接受的唯一信息是 最后一个编码器隐藏状态,这是类似于对输入的序列进行总结。

所以对于较长的输入文本,结构会变成如下图所示

如果仍然希望解码器仅仅利用最后一个编码器的隐藏状态的输出就输出完成的译文,肯定是不太合理地,会导致灾难性遗忘。

所以我们如果可以向解码器提供每个编码器时间步的向量表示,而不是只把最终的给它,是不是就能改进翻译的结果呢,这就需要引入注意力机制。

注意力机制是编码器和解码器之间的接口,它为解码器提供每个编码器隐藏状态的信息(最后一层的除外)。通过这个设置,模型能够有选择地侧重输入序列中游泳的部分,有助于模型更高效地处理输入长句。

注意力机制的本质:通过为每个单词分配值,注意力机制可以为不同单词分配不同的注意力。然后利用softmax对编码器隐藏状态进行加权求和,得到上下文向量(Context Vector)。

注意力层的实现可以分成6个步骤。

2. 注意力实现步骤

0. 准备隐藏状态

首先需要准备一个解码器隐藏状态和所有可用的编码器的隐藏状态

1. 获取每个编码器隐藏状态的分数

分数(标量)通过评分函数获得。图示是解码器和编码器隐藏状态之间的点积。

2. 通过softmax层运行所有分数

将上一步的得分放到softmax层,这些得分代表注意力分布。

3. 通过softmax得分将每个编码器的隐藏状态相乘

将每个编码器隐藏状态与对应的softmax得分相乘,获得alignment向量

4. 向量求和

将所有的alignment向量相加,生成上下文向量(Context Vector)

5. 将上下文向量输入编码器

最后一步就是把生成的上下文向量给编码器作为输入使用

最后来一个总的动图

总结与心得体会

在没有本节学习之前,我一直以为注意力机制就是Transformer中使用的自注意力机制。通过注意力机制的过程学习,我才发现,自注意力机制只是注意力机制中的一种,并且Transformer这种也只是自注意力机制的一种实现形式。宏观上来看,自注意力机制可以用在更广泛的场景中,比如计算一下特征图每层之间的注意力分数,叫做通道注意力机制。

相关推荐
Jorunk9 小时前
状态对齐是连接 GMM-HMM 和 DNN-HMM 的核心桥梁
人工智能·神经网络·dnn
袋鼠云数栈9 小时前
媒体专访丨袋鼠云 CEO 宁海元:Agent元年之后,产业需回到“数据+智能”的长期结构
大数据·人工智能
TF男孩9 小时前
一堆3D点,神经网络是怎么判断它是椅子的?
人工智能·神经网络
AI即插即用9 小时前
即插即用系列 | CVPR 2024 RMT:既要全局感受野,又要 CNN 的局部性?一种拥有显式空间先验的线性 Transformer
人工智能·深度学习·神经网络·目标检测·计算机视觉·cnn·transformer
changuncle9 小时前
Polyglot Notebooks环境安装及注册Python Kernel
人工智能
roman_日积跬步-终至千里9 小时前
【人工智能导论】04-推理-推理方法:从符号推理到不确定性推理
人工智能·人工智能导论
渡我白衣9 小时前
导论:什么是机器学习?——破除迷思,建立全景地图
人工智能·深度学习·神经网络·目标检测·microsoft·机器学习·自然语言处理
GodGump9 小时前
从 Yann LeCun 访谈看 AGI 幻觉:为什么大模型 ≠ 通用智能
人工智能·agi
gorgeous(๑>؂<๑)9 小时前
【南开大学-程明明组-AAAI26】一种用于多模态遥感目标检测的统一模型
人工智能·目标检测·计算机视觉
smile_Iris9 小时前
Day 45 简单CNN
人工智能·深度学习·cnn