阿里PAI-ChatLearn:大规模 Alignment高效训练框架正式开源

导读

ChatGPT是OpenAI开发的基于大型语言模型(LLM)的聊天机器人,以其令人惊叹的对话能力而迅速火爆并被广泛采用。ChatGPT 成功背后得益于大型语言模型生成领域的新训练范式:RLHF (Reinforcement Learning from Human Feedback),即以强化学习方式依据人类反馈优化语言模型。不同于传统的深度学习训练,只涉及到单个模型的迭代和优化,以 RLHF 为代表的Alignment训练范式涉及到多个大模型的计算和数据交互,这对于构建构建一个易用、高效、可扩展的训练系统提出了诸多的挑战。

为了解决上述问题,我们提出了一个新的 Alignment 训练框架 PAI-ChatLearn。ChatLearn 通过对 Alignment 训练流程进行合理的抽象和解耦,提供灵活的资源分配和模型调度策略。ChatLearn提供了RLHF、DPO、OnlineDPO、GRPO等 Alignment 训练,同时也支持用户自定义 model 的执行 flow,来实现自定义的训练流程。相比于当前的 SOTA 系统,ChatLearn 在 7B+7B (Policy+Reward) 规模性能提升115%,70B+70B 规模性能提升208%,并且能支持更大规模的Alignment训练,例如300B+300B规模。同时ChatLearn也一直在支持Qwen大模型的Alignment训练,在Qwen-Chat、Qwen2-Chat、Qwen2-Math上都取得不错的效果。

PAI-ChatLearn现已全面开源,助力用户快速、高效的Alignment训练体验。借助ChatLearn,用户可全身心投入于模型设计与效果优化,无需分心于底层技术细节。ChatLearn将承担起资源调度、数据传输、参数同步、分布式运行管理以及确保系统高效稳定运作的重任,为用户提供一站式解决方案。PAI-ChatLearn背后的技术框架如何设计?性能和效果如何?未来有哪些规划?今天一起来深入了解。

PAI-ChatLearn是什么

PAI-ChatLearn是阿里云PAI团队自研并开源的、灵活易用的、支持大规模 Alignment高效训练的框架。

背景

ChatGPT 是由 OpenAI 开发的基于大型语言模型 (Large Language Model, LLM) 的聊天机器人,以其令人惊叹的对话能力而迅速火爆并被广泛采用。ChatGPT 成功背后得益于大型语言模型生成领域的新训练范式:RLHF (Reinforcement Learning from Human Feedback),即以强化学习方式依据人类反馈优化语言模型。

不同于传统的深度学习训练,只涉及到单个模型的迭代和优化,以 RLHF 为代表的训练范式涉及到多个大模型的计算和数据交互,这对于构建构建一个易用、高效的训练系统提出了诸多的挑战。

  1. 编程接口:如何设计一个通用且灵活的编程接口,让用户能专注于单个模型的建模,同时,又可以灵活地控制模型间的交互。

  2. 分布式加速引擎:随着模型规模的增大,用户会选择一些分布式计算和加速的 backend,比如 训练有Megatron-LM、DeepSpeed 等,推理有vLLM等,如何结合这些加速 backend 来实现高效的多模型计算框架。

  3. 并行策略:多个模型可能各有各的计算特点,比如仅推理的模型和训练的模型在显存和计算上的特性都不同,每个模型最佳的并行策略也可能不同。因此,框架应该允许不同的模型配置不同的并行策略以发挥整体的最佳性能。

  4. 资源分配:如何灵活地给多个模型分配资源来实现高效的并发调度和执行。

  5. 扩展训练方式:当前Alignment训练,除了RLHF还有很多变种,例如:DPO/IPO、KTO、ORPO、Online DPO、RLAIF等,如何能便捷、快速地扩展训练流程以适用不同的Alignment训练。

为了解决上述问题,阿里云PAI团队提出了一个新的 Alignment 模型训练框架 ChatLearn。ChatLearn 通过对模型计算逻辑的抽象,解耦了模型和计算 backend、分布式策略的绑定,提供灵活的资源调度机制,可以支持灵活的资源分配和并行调度策略。

PAI-ChatLearn主要特性

ChatLearn的优点总结如下:

  1. 易用的编程接口: ChatLearn提供通用的编程抽象,用户只需要封装几个函数即可完成模型构造。用户只需要专注于单模型的编程,系统负责资源调度、数据流传输、控制流传输、分布式执行等。

  2. 高可扩展的训练方式: ChatLearn 提供 RLHF、DPO、OnlineDPO、GRPO 等 Alignment 训练,同时也支持用户自定义 model 的执行 flow,使定制化训练流程变得非常便捷。

  3. 多种分布式加速引擎: 用户可以使用不同的计算 backend 进行模型建模,如 Megatron-LM、DeepSpeed、vLLM 等。用户也可以组合使用不同的 backend,如用 Megatron-LM 来进行加速训练,用 vLLM 来加速推理。

  4. 灵活的并行策略和资源分配: ChatLearn 支持不同模型配置不同的并行策略,可以结合各模型计算、显存、通信的特点来制定不同的并行策略。同时 ChatLearn 支持灵活的资源调度机制,支持各模型的资源独占或复用,通过系统调度策略支持高效的串行/并行执行和高效的显存共享。

  5. 高性能: 相较于当前的 SOTA 系统,ChatLearn 在 7B+7B (Policy+Reward) 规模性能提升115%,70B+70B 规模性能提升 208%。同时,ChatLearn 支持更大规模的 Alignment 训练,例如:300B+300B。

PAI-ChatLearn技术架构

PAI-ChatLearn技术架构如上图:

API:ChatLearn提供了RLHF、DPO、OnlineDPO、GRPO 等 Alignment 训练,同时也支持用户自定义 model 的执行 flow,来实现自定义的训练流程。同时ChatLearn提供Module的抽象,用户通过继承MegatronModule、DeepSpeedModule、VLLMModule 完成对不同计算backend的封装。ChatLearn 通过 yaml 文件的形式为 Alignment 训练,以及不同的模型配置不同的超参数、并行策略等,来实现灵活的模型和并行策略配置。

Scheduler:ChatLearn 提出了 DistActor 的抽象来支持模型的分布式训练或推理。DistActor 继承了 Ray actor 的状态管理和 worker 间的隔离性,同时突破了 Ray actor 不能跨机的限制。通过 DistActor,ChatLearn 可以支持任意规模的模型推理和训练。同时,ChatLearn Scheduler 通过划分集群 Resource Group 和调度策略,实现硬件感知的亲和性调度。ChatLearn 也支持灵活的资源分配,支持模型间的资源复用、独占或部分复用等策略,在给定资源数的情况下,实现训练效率的最大化。

Executor:ChatLearn Executor 将 Alignment 训练流程划分为三个主要的模块,Environment、 Trainer和 Evaluator。Environment 负责推理模块模型和数据的并发执行和管理,Trainer 负责相应的训练模块,Evaluator 负责模型效果评估。Executor 还负责数据传输、参数同步。

Backend:得益于 ChatLearn 良好的编程接口抽象,用户通过简单的封装即可接入各种不同 backend 进行计算优化和算法优化。

Optimization:ChatLearn 也支持各种计算、显存、通信优化,通过各种并行策略组合来加速训练,通过 paged attention 和 continuous batching 等来加速推理,通过 EMS(Efficient Memory Sharing) 技术来高效复用显存,减少总资源需求,通过分组广播技术来支持 Training 和 Inference 模型间高效参数同步,等等。

性能和效果

我们比较了不同参数量规模模型的 RLHF 训练吞吐量,采取 N+N 的模型配置,即 Policy 模型和 Reward 模型采用相同大小的参数量。我们和 DeepSpeed-Chat、OpenRLHF 对比了 7B 和 70B 的模型配置,在 8 GPUs 7B+7B 规模,有 115% 的加速,在 32 GPUs 70B+70B 规模,有 208% 的加速。规模越大,加速效果越明显。同时ChatLearn还能支持更大规模的 Alignment 训练,例如:300B+300B 规模。

ChatLearn支持了Qwen 大模型的Alignment训练,Qwen2-72B Online DPO训练效果在开源模型中取得领先:

Qwen2-Math-Instruct GRPO训练效果领先业界模型:

Roadmap

后续我们计划定期发布Release版本。ChatLearn近期的Roadmap如下:

  • 支持Megatron-mcore格式模型;

  • 支持MoE模型Alignment训练;

  • 支持更多的模型;

总结

PAI-ChatLearn 是阿里云 PAI 团队自研的、灵活易用的、支持大规模 Alignment 高效训练的框架。ChatLearn 通过对 Alignment 训练流程进行合理的抽象和解耦,提供灵活的资源分配和并行调度策略。ChatLearn提供了 RLHF、DPO、OnlineDPO、GRPO 等 Alignment 训练,同时也支持用户自定义 model 的执行 flow,来实现自定义的训练流程。相比于当前的 SOTA 系统,ChatLearn 在 7B+7B 规模有 115% 的加速,在 70B+70B规模有 208% 的加速。同时ChatLearn可以扩展到更大规模,如:300B+300B(Policy+Reward)。后续ChatLearn会持续扩展支持的模型种类,并支持更多的backend进行训练或推理,同时会持续优化框架性能,简化使用接口,方便大家进行 Alignment 训练。欢迎大家来使用、交流和反馈。

开源地址

开源地址: GitHub - alibaba/ChatLearn

使用文档:

**交流钉群号:**98090003312

参考文献

  1. https://arxiv.org/pdf/2407.10671

  2. Introducing Qwen2-Math | Qwen

  3. Megatron-LM: GitHub - NVIDIA/Megatron-LM: Ongoing research training transformer models at scale

  4. DeepSpeed-Chat: DeepSpeedExamples/applications/DeepSpeed-Chat at master · microsoft/DeepSpeedExamples · GitHub

  5. OpenRLHF: GitHub - OpenRLHF/OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework (70B+ PPO Full Tuning & Iterative DPO & LoRA & Mixtral)

相关推荐
深度学习实战训练营1 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20063 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_3 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover3 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川4 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
阡之尘埃6 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
ClkLog-开源埋点用户分析7 小时前
ClkLog企业版(CDP)预售开启,更有鸿蒙SDK前来助力
华为·开源·开源软件·harmonyos
孙同学要努力8 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20218 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧39 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab