第J1周:ResNet-50算法实战与解析(TensorFlow版)

>- **🍨 本文为[🔗365天深度学习训练营]中的学习记录博客**

>- **🍖 原作者:[K同学啊]**

本周任务:

1.请根据本文TensorFlow代码,编写出相应的pytorch代码

2.了解残差结构

3.是否可以将残差模块融入到C3当中(自由探索)

一、理论知识储备

1.CNN算法发展

首先借用一下来自于网络的插图,在这张图上列出了一些有里程碑意义的、经典卷积神经网络。评估网络的性能,一个维度是识别精度,另一个维度则是网络的复杂度(计算量)。从这张图里,我们能看到:

(1) 2012年,AlexNet是由Alex Krizhevsky、llya Sutskever和Geoffrey Hinton在2012年lmageNet图像分类竞赛中提出的一种经典的卷积神经网络。AlexNet是首个深层卷积神经网络,同时也引入了ReLU激活函数、局部归一化、数据增强和Dropout 处理。

(2) VGG-16和VGG-19,这是依靠多层卷积+池化层堆叠而成的一个网络,其性能在当时也还不错,但是计算量巨大。VGG-16的网络结构,是将深层网络结构分为几个组,每组堆数量不等的Conv-ReLU层,并在最后一层使用MaxPool缩减特征图尺寸。

(3) GoogLeNet(也就是Inception V1),这是一个提出了使用并联卷积结构、且在每个通路中使用不同卷积核的网络,并且随后衍生出V2、V3、V4等一系列网络结构,构成一个家族。

(4) ResNet,有V1、V2、NeXt等不同的版本,这是一个提出恒等映射概念、具有短路直接路径模块化的网络结构,可以很方便地扩展为18~1001层(ResNet-18、ResNet-34、ResNet-50、ResNet-101中的数字都是表示网络层数)。

(5) DenseNet,这是一种具有前级特征重用、层间直连、结构递归扩展等特点的卷积网络。

2.残差网络的由来

深度残差网络Resnet(deep residual network)在2015年由何凯明等提出,因为它简单与实用并存,随后很多研究都是建立在ResNet-50或者ResNet-101基础上完成的。

ResNet主要解决深度卷积网络在深度加深时候的"退化"问题。 在一般的卷积神经网络中,增大网络深度后带来的第一个问题就是梯度消失、爆炸,这个问题在Szegedy提出BN后被顺利解决。BN层能对各层的输出做归一化,这样梯度在反向层层传递后仍能保持大小稳定,不会出现过小或过大的情况。但是作者发现加了BN后,再加大深度仍然不容易收敛,其提到了第二个问题------准确率下降问题:层级大到一定程度时,准确率就会饱和,然后迅速下降。这种下降既不是梯度消失引起的,也不是过拟合造成的,而是由于网络过于复杂,以至于光靠不加约束的放养式的训练很难达到理想的错误率。

准确率下降问题不是网络结构本身的问题,而是现有的训练方式不够理想造成的。当前广泛使用的训练方法,无论是SGD,还是RMSProp,或是Adam,都无法在网络深度变大后达到理论上最优的收敛结果。

**作者在文中证明了只要有合适的网络结构,更深的网络肯定会比较浅的网络效果要好。**证明过程也很简单:假设在一种网络A的后面添加几层形成新的网络B,如果增加的层级只是对A的输出做了个恒等映射(identity mapping),即A的输出经过新增的层级变成B的输出后没有发生变化,这样网络A和网络B的错误率就是相等的,也就证明了加深后的网络不会比加深前的网络效果差。

图1 残差模块

何凯明提出了一种残差结构来实现上述恒等映射(图1):整个模块除了正常的卷积层输出外,还有一个分支把输入直接连到输出上,该分支输出和卷积的输出做算数相加得到最终的输出,用公式表达就是 H ( x ) = F ( x ) + x ,x是输入,F(x)是卷积分支的输出,H ( x )是整个结构的输出。可以证明如果F(x)分支中所有参数都是0,H ( x ) 就是个恒等映射。

残差结构人为制造了恒等映射,就能让整个结构朝着恒等映射的方向去收敛,确保最终的错误率不会因为深度的变大而越来越差。如果一个网络通过简单的手工设置参数就能达到想要的结果,那这种结构就很容易通过训练来收敛到该结果,这是一条设计复杂的网络时通用的规则。

图2 两种残差单元

图2左边的单元为ResNet两层的残差单元,两层的残差单元包含两个相同输出的通道数的 3x3 卷积,只是用于较浅的ResNet网络,对较深的网络主要使用三层的残差单元。三层的残差单元又称为bottleneck结构,先用一个 1x1 卷积进行降维,然后 3x3 卷积,最后用 1x1 升维恢复原有的维度。另外,如果有输入输出维度不同的情况,可以对输入做一个线性映射变换维度,再连接后面的层,三层的残差单元对于相同数量的层又减少了参数量,因此可以拓展更深的模型,通过残差单元的组合有经典的ResNet-50,ResNet-101等网络结构。

我们可以通过何凯明的这篇文章深入了解:Deep Residual Learning for Image Recognition.pdf

二、前期工作

🚀 我的环境:

  • 语言环境:Python3.11.7
  • 编译器:jupyter notebook
  • 深度学习框架:TensorFlow2.13.0

1、设置CPU(也可以是GPU)

import tensorflow as tf

gpus=tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0],True)
    tf.config.set_visible_devices([gpus[0]],"GPU")

2、导入数据

import pathlib

data_dir=r"D:\THE MNIST DATABASE\J系列\J1\bird_photos"
data_dir=pathlib.Path(data_dir)

3、查看数据

image_count=len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

运行结果:

图片总数为: 565

三、数据预处理

|-------------------------|------|
| 文件夹 | 数量 |
| Bananaquit | 166张 |
| Black Skimmer | 111张 |
| Black Throated Bushtiti | 122张 |
| Cockatoo | 166张 |

1、加载数据

加载训练集:

train_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(224,224),
    batch_size=8
)

这里突然出现了一个我从未遇到的错误:

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfb in position 27: invalid start byte

我查询了好久才发现原来是因为中文路径造成的问题,翻阅以前自己做的项目,确实没有出现过中文路径,然后百度下解决方法,最简便的就是修改路径为英文,省时省力。故而返回前面修改路径为:D:\THE MNIST DATABASE\J-series\J1\bird_photos,然后再次运行,得到运行结果:

Found 565 files belonging to 4 classes.
Using 452 files for training.

加载验证集:

val_ds=tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(224,224),
    batch_size=8
)

运行结果:

Found 565 files belonging to 4 classes.
Using 113 files for validation.

查看分类名称

class_names=train_ds.class_names
print(class_names)

运行结果:

['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

2、可视化数据

import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文标签
plt.rcParams['axes.unicode_minus']=False   #正常显示负号

plt.figure(figsize=(10,5))
plt.suptitle("OreoCC的案例")

for images,labels in train_ds.take(1):
    for i in range(8):
        
        ax=plt.subplot(2,4,i+1)
        
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

运行结果:


单独查看

plt.imshow(images[1].numpy().astype("uint8"))

运行结果:

3、再次检查数据

for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

运行结果:

(8, 224, 224, 3)
(8,)

image_batch是形状的张量(8,224,224,3)。这是一批形状224*224*4的8张图片(最后一维指的是彩色通道RGB)

labels_batch是形状(8,)的张量,这些标签对应8张图片。

4、配置数据集

shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456

prefetch() :预取数据,加速运行,其详细介绍可以参考前面文章,里面都有讲解。

cache() :将数据集缓存到内存当中,加速运行

AUTOTUNE=tf.data.AUTOTUNE

train_ds=train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds=val_ds.cache().prefetch(buffer_size=AUTOTUNE)

四、残差网络(ResNet)介绍

1、残差网络解决了什么

残差网络是为了解决神经网络隐藏层过多时,而引起的网络退化问题。退化(degradation)问题是指:当网络隐藏层变多时,网络的准确度达到饱和然后急剧退化,而且这个退化不是由于过拟合引起的。

拓展:深度神经网络的"两朵乌云"

  • 梯度弥散/爆炸

简单来讲就是网络太深了,会导致模型训练难以收敛。这个问题可以被标准初始化和中间层正规化的方法有效控制。

  • 网络退化

随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降,这个退化不是由过拟合引起的。

++梯度消失++ :随着深度增加,梯度急剧减小。梯度消失是指在反向传播过程中梯度逐渐降低到0导致参数不可学习的情况。最后几层可以改变,但前几层(靠近输入层的隐含层神经元)相对固定,变为浅层模型,不能有效地学习。很大程度上是来自于激活函数的饱和。

++梯度爆炸++ :梯度消失相反,在反向传播过程中由于梯度过大导致模型无法收敛的情形。导致靠近输入层的隐含层神经元调整变动极大。

网络退化:在增加网络层数的过程中,training accuracy 逐渐趋于饱和,继续增加层数,training accuracy 就会出现下降的现象,而这种下降不是由过拟合造成的。实际上较深模型后面添加的不是恒等映射,而是一些非线性层。因此,退化问题也表明了:通过多个非线性层来近似恒等映射可能是困难的。如下图:

由上图可以看出,56-layer(层)的网络比20-layer的网络在训练集和测试集上的表现都要差【注意:这里不是过拟合(过拟合是在训练集上表现得好,而在测试集中表现得很差)】,说明如果只是简单的增加网络深度,可能会使神经网络模型退化,进而丢失网络前面获取的特征。

2、论文分析

可以通过大名鼎鼎的大神何凯明的这篇文章深入了解:

Deep Residual Learning for Image Recognition

本论文提出的问题:

  1. 深度神经网络训练困难:随着网络深度的增加,训练更深的神经网络变得更加困难,会出现梯度消失或爆炸的问题,导致网络难以收敛。
  2. 深度增加时准确率饱和然后下降:即使使用现有的技术(如归一化初始化和中间归一化层)解决了梯度问题,当网络深度增加时,准确率会饱和然后迅速下降,这被称为退化问题。

本论文的解决方案:

  1. 残差学习框架:论文提出了一种新的框架,称为残差学习,通过让网络层学习输入的残差函数而不是未经引用的函数来简化训练过程。
  2. 引入快捷连接(Shortcut Connections):在网络中引入了快捷连接,这些连接跳过一个或多个层,其输出被加到堆叠层的输出上,从而允许网络学习输入和输出之间的残差。
  3. 残差块(Residual Blocks):通过构建残差块,每个块包括两个或多个卷积层和一个快捷连接,使得如果最优函数接近于恒等映射,则求解器可以更容易地找到解。

将所需的基础映射表示为H(x)

让堆叠的非线性层适合F(x):= H(x)- x的另一个映射。

原始映射为F(x)+ x。

通过快捷连接来实现身份验证。

最后结果:

  1. 优化容易:残差网络(ResNet)比普通网络(Plain Networks)更容易优化,并且在增加深度时可以获得更高的准确率。
  2. 准确率提升:在ImageNet数据集上,使用残差网络可以达到152层的深度,而且复杂度低于VGG网络,并且在ILSVRC 2015分类任务上取得了第一名。
  3. 在多个任务上的成功应用:残差网络不仅在图像分类上表现出色,还在COCO数据集的目标检测任务上取得了显著的改进,相对提高了28%的性能,并在ILSVRC & COCO 2015比赛中的多个任务中获得了第一名。

论文通过大量的实验验证了残差学习框架的有效性,并展示了深度残差网络在多个视觉识别任务上的强大性能。

没有时间看原文的童鞋可以通过这篇文章进行学习:ResNet:《Deep Residual Learning for Image Recognition》 - 知乎 (zhihu.com)

3、ResNet-50介绍

ResNet-50有两个基本的块,分别名为Conv BlockIdentity Block

Conv Block结构:

五、构建ResNet-50网络模型

尝试按照上面三张图构建ResNet-50模型:

from keras import layers
from keras.layers import Input,Activation,BatchNormalization,Flatten
from keras.layers import Dense,Conv2D,MaxPooling2D,ZeroPadding2D,AveragePooling2D
from keras.models import Model

def identity_block(input_tensor,kernel_size,filters,stage,block):
    
    filters1,filters2,filters3=filters
    
    name_base=str(stage)+block+'_identity_block_'
    
    x=Conv2D(filters1,(1,1),name=name_base+'conv1')(input_tensor)
    x=BatchNormalization(name=name_base+'bn1')(x)
    x=Activation('relu',name=name_base+'relu1')(x)
    
    x=Conv2D(filters2,kernel_size,padding='same',name=name_base+'conv2')(x)
    x=BatchNormalization(name=name_base+'bn2')(x)
    x=Activation('relu',name=name_base+'relu2')(x)
    
    x=Conv2D(filters3,(1,1),name=name_base+'conv3')(x)
    x=BatchNormalization(name=name_base+'bn3')(x)
    
    x=layers.add([x,input_tensor],name=name_base+'add')
    x=Activation('relu',name=name_base+'relu4')(x)
    return x

#在残差网络中,广泛地使用了BN层:但是没有使用MaxPooling以便减小特征图尺寸
#作为替代,在每个模块的第一层,都使用了strides=(2,2)的方式进行特征图尺寸缩减
#与使用MaxPooling相比,毫无疑问是减少了卷积的次数,输入图像分辨率较大时比较适合
#在残差网络的最后一级,先利用layer.add()实现H(x)=x+F(x)

def conv_block(input_tensor,kernel_size,filters,stage,block,strides=(2,2)):
    
    filters1,filters2,filters3=filters
    
    res_name_base=str(stage)+block+'_conv_block_res_'
    name_base=str(stage)+block+'_conv_block_'
    
    x=Conv2D(filters1,(1,1),strides=strides,name=name_base+'conv1')(input_tensor)
    x=BatchNormalization(name=name_base+'bn1')(x)
    x=Activation('relu',name=name_base+'relu1')(x)
    
    x=Conv2D(filters2,kernel_size,padding='same',name=name_base+'conv2')(x)
    x=BatchNormalization(name=name_base+'bn2')(x)
    x=Activation('relu',name=name_base+'relu2')(x)
    
    x=Conv2D(filters3,(1,1),name=name_base+'conv3')(x)
    x=BatchNormalization(name=name_base+'bn3')(x)
    
    shortcut=Conv2D(filters3,(1,1),strides=strides,name=res_name_base+'conv')(input_tensor)
    shortcut=BatchNormalization(name=res_name_base+'bn')(shortcut)
    
    x=layers.add([x,shortcut],name=name_base+'add')
    x=Activation('relu',name=name_base+'relu4')(x)
    return x

def ResNet50(input_shape=[224,224,3],classes=1000):
    
    img_input=Input(shape=input_shape)
    x=ZeroPadding2D((3,3))(img_input)
    
    x=Conv2D(64,(7,7),strides=(2,2),name='conv1')(x)
    x=BatchNormalization(name='bn_conv1')(x)
    x=Activation('relu')(x)
    x=MaxPooling2D((3,3),strides=(2,2))(x)
    
    x=    conv_block(x,3,[64,64,256],stage=2,block='a',strides=(1,1))
    x=identity_block(x,3,[64,64,256],stage=2,block='b')
    x=identity_block(x,3,[64,64,256],stage=2,block='c')
    
    x=    conv_block(x,3,[128,128,512],stage=3,block='a')
    x=identity_block(x,3,[128,128,512],stage=3,block='b')
    x=identity_block(x,3,[128,128,512],stage=3,block='c')
    x=identity_block(x,3,[128,128,512],stage=3,block='d')
    
    x=    conv_block(x,3,[256,256,1024],stage=4,block='a')
    x=identity_block(x,3,[256,256,1024],stage=4,block='b')
    x=identity_block(x,3,[256,256,1024],stage=4,block='c')
    x=identity_block(x,3,[256,256,1024],stage=4,block='d')
    x=identity_block(x,3,[256,256,1024],stage=4,block='e')
    x=identity_block(x,3,[256,256,1024],stage=4,block='f')
    
    x=    conv_block(x,3,[512,512,2048],stage=5,block='a')
    x=identity_block(x,3,[512,512,2048],stage=5,block='b')
    x=identity_block(x,3,[512,512,2048],stage=5,block='c')
    
    x=AveragePooling2D((7,7),name='avg_pool')(x)
    
    x=Flatten()(x)
    x=Dense(classes,activation='softmax',name='fc1000')(x)
    
    model=Model(img_input,x,name='resnet50')
    
    #加载预训练模型
    model.load_weights(r"D:\THE MNIST DATABASE\J-series\resnet50_weights_tf_dim_ordering_tf_kernels.h5")
    
    return model

model=ResNet50()
model.summary()

运行结果:

Model: "resnet50"
__________________________________________________________________________________________________
 Layer (type)                Output Shape                 Param #   Connected to                  
==================================================================================================
 input_8 (InputLayer)        [(None, 224, 224, 3)]        0         []                            
                                                                                                  
 zero_padding2d_7 (ZeroPadd  (None, 230, 230, 3)          0         ['input_8[0][0]']             
 ing2D)                                                                                           
                                                                                                  
 conv1 (Conv2D)              (None, 112, 112, 64)         9472      ['zero_padding2d_7[0][0]']    
                                                                                                  
 bn_conv1 (BatchNormalizati  (None, 112, 112, 64)         256       ['conv1[0][0]']               
 on)                                                                                              
                                                                                                  
 activation_7 (Activation)   (None, 112, 112, 64)         0         ['bn_conv1[0][0]']            
                                                                                                  
 max_pooling2d_7 (MaxPoolin  (None, 55, 55, 64)           0         ['activation_7[0][0]']        
 g2D)                                                                                             
                                                                                                  
 2a_conv_block_conv1 (Conv2  (None, 55, 55, 64)           4160      ['max_pooling2d_7[0][0]']     
 D)                                                                                               
                                                                                                  
 2a_conv_block_bn1 (BatchNo  (None, 55, 55, 64)           256       ['2a_conv_block_conv1[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 2a_conv_block_relu1 (Activ  (None, 55, 55, 64)           0         ['2a_conv_block_bn1[0][0]']   
 ation)                                                                                           
                                                                                                  
 2a_conv_block_conv2 (Conv2  (None, 55, 55, 64)           36928     ['2a_conv_block_relu1[0][0]'] 
 D)                                                                                               
                                                                                                  
 2a_conv_block_bn2 (BatchNo  (None, 55, 55, 64)           256       ['2a_conv_block_conv2[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 2a_conv_block_relu2 (Activ  (None, 55, 55, 64)           0         ['2a_conv_block_bn2[0][0]']   
 ation)                                                                                           
                                                                                                  
 2a_conv_block_conv3 (Conv2  (None, 55, 55, 256)          16640     ['2a_conv_block_relu2[0][0]'] 
 D)                                                                                               
                                                                                                  
 2a_conv_block_res_conv (Co  (None, 55, 55, 256)          16640     ['max_pooling2d_7[0][0]']     
 nv2D)                                                                                            
                                                                                                  
 2a_conv_block_bn3 (BatchNo  (None, 55, 55, 256)          1024      ['2a_conv_block_conv3[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 2a_conv_block_res_bn (Batc  (None, 55, 55, 256)          1024      ['2a_conv_block_res_conv[0][0]
 hNormalization)                                                    ']                            
                                                                                                  
 2a_conv_block_add (Add)     (None, 55, 55, 256)          0         ['2a_conv_block_bn3[0][0]',   
                                                                     '2a_conv_block_res_bn[0][0]']
                                                                                                  
 2a_conv_block_relu4 (Activ  (None, 55, 55, 256)          0         ['2a_conv_block_add[0][0]']   
 ation)                                                                                           
                                                                                                  
 2b_identity_block_conv1 (C  (None, 55, 55, 64)           16448     ['2a_conv_block_relu4[0][0]'] 
 onv2D)                                                                                           
                                                                                                  
 2b_identity_block_bn1 (Bat  (None, 55, 55, 64)           256       ['2b_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2b_identity_block_relu1 (A  (None, 55, 55, 64)           0         ['2b_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 2b_identity_block_conv2 (C  (None, 55, 55, 64)           36928     ['2b_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 2b_identity_block_bn2 (Bat  (None, 55, 55, 64)           256       ['2b_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2b_identity_block_relu2 (A  (None, 55, 55, 64)           0         ['2b_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 2b_identity_block_conv3 (C  (None, 55, 55, 256)          16640     ['2b_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 2b_identity_block_bn3 (Bat  (None, 55, 55, 256)          1024      ['2b_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2b_identity_block_add (Add  (None, 55, 55, 256)          0         ['2b_identity_block_bn3[0][0]'
 )                                                                  , '2a_conv_block_relu4[0][0]']
                                                                                                  
 2b_identity_block_relu4 (A  (None, 55, 55, 256)          0         ['2b_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 2c_identity_block_conv1 (C  (None, 55, 55, 64)           16448     ['2b_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 2c_identity_block_bn1 (Bat  (None, 55, 55, 64)           256       ['2c_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2c_identity_block_relu1 (A  (None, 55, 55, 64)           0         ['2c_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 2c_identity_block_conv2 (C  (None, 55, 55, 64)           36928     ['2c_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 2c_identity_block_bn2 (Bat  (None, 55, 55, 64)           256       ['2c_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2c_identity_block_relu2 (A  (None, 55, 55, 64)           0         ['2c_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 2c_identity_block_conv3 (C  (None, 55, 55, 256)          16640     ['2c_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 2c_identity_block_bn3 (Bat  (None, 55, 55, 256)          1024      ['2c_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 2c_identity_block_add (Add  (None, 55, 55, 256)          0         ['2c_identity_block_bn3[0][0]'
 )                                                                  , '2b_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 2c_identity_block_relu4 (A  (None, 55, 55, 256)          0         ['2c_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3a_conv_block_conv1 (Conv2  (None, 28, 28, 128)          32896     ['2c_identity_block_relu4[0][0
 D)                                                                 ]']                           
                                                                                                  
 3a_conv_block_bn1 (BatchNo  (None, 28, 28, 128)          512       ['3a_conv_block_conv1[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 3a_conv_block_relu1 (Activ  (None, 28, 28, 128)          0         ['3a_conv_block_bn1[0][0]']   
 ation)                                                                                           
                                                                                                  
 3a_conv_block_conv2 (Conv2  (None, 28, 28, 128)          147584    ['3a_conv_block_relu1[0][0]'] 
 D)                                                                                               
                                                                                                  
 3a_conv_block_bn2 (BatchNo  (None, 28, 28, 128)          512       ['3a_conv_block_conv2[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 3a_conv_block_relu2 (Activ  (None, 28, 28, 128)          0         ['3a_conv_block_bn2[0][0]']   
 ation)                                                                                           
                                                                                                  
 3a_conv_block_conv3 (Conv2  (None, 28, 28, 512)          66048     ['3a_conv_block_relu2[0][0]'] 
 D)                                                                                               
                                                                                                  
 3a_conv_block_res_conv (Co  (None, 28, 28, 512)          131584    ['2c_identity_block_relu4[0][0
 nv2D)                                                              ]']                           
                                                                                                  
 3a_conv_block_bn3 (BatchNo  (None, 28, 28, 512)          2048      ['3a_conv_block_conv3[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 3a_conv_block_res_bn (Batc  (None, 28, 28, 512)          2048      ['3a_conv_block_res_conv[0][0]
 hNormalization)                                                    ']                            
                                                                                                  
 3a_conv_block_add (Add)     (None, 28, 28, 512)          0         ['3a_conv_block_bn3[0][0]',   
                                                                     '3a_conv_block_res_bn[0][0]']
                                                                                                  
 3a_conv_block_relu4 (Activ  (None, 28, 28, 512)          0         ['3a_conv_block_add[0][0]']   
 ation)                                                                                           
                                                                                                  
 3b_identity_block_conv1 (C  (None, 28, 28, 128)          65664     ['3a_conv_block_relu4[0][0]'] 
 onv2D)                                                                                           
                                                                                                  
 3b_identity_block_bn1 (Bat  (None, 28, 28, 128)          512       ['3b_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3b_identity_block_relu1 (A  (None, 28, 28, 128)          0         ['3b_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3b_identity_block_conv2 (C  (None, 28, 28, 128)          147584    ['3b_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3b_identity_block_bn2 (Bat  (None, 28, 28, 128)          512       ['3b_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3b_identity_block_relu2 (A  (None, 28, 28, 128)          0         ['3b_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3b_identity_block_conv3 (C  (None, 28, 28, 512)          66048     ['3b_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3b_identity_block_bn3 (Bat  (None, 28, 28, 512)          2048      ['3b_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3b_identity_block_add (Add  (None, 28, 28, 512)          0         ['3b_identity_block_bn3[0][0]'
 )                                                                  , '3a_conv_block_relu4[0][0]']
                                                                                                  
 3b_identity_block_relu4 (A  (None, 28, 28, 512)          0         ['3b_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3c_identity_block_conv1 (C  (None, 28, 28, 128)          65664     ['3b_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3c_identity_block_bn1 (Bat  (None, 28, 28, 128)          512       ['3c_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3c_identity_block_relu1 (A  (None, 28, 28, 128)          0         ['3c_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3c_identity_block_conv2 (C  (None, 28, 28, 128)          147584    ['3c_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3c_identity_block_bn2 (Bat  (None, 28, 28, 128)          512       ['3c_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3c_identity_block_relu2 (A  (None, 28, 28, 128)          0         ['3c_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3c_identity_block_conv3 (C  (None, 28, 28, 512)          66048     ['3c_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3c_identity_block_bn3 (Bat  (None, 28, 28, 512)          2048      ['3c_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3c_identity_block_add (Add  (None, 28, 28, 512)          0         ['3c_identity_block_bn3[0][0]'
 )                                                                  , '3b_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 3c_identity_block_relu4 (A  (None, 28, 28, 512)          0         ['3c_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3d_identity_block_conv1 (C  (None, 28, 28, 128)          65664     ['3c_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3d_identity_block_bn1 (Bat  (None, 28, 28, 128)          512       ['3d_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3d_identity_block_relu1 (A  (None, 28, 28, 128)          0         ['3d_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3d_identity_block_conv2 (C  (None, 28, 28, 128)          147584    ['3d_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3d_identity_block_bn2 (Bat  (None, 28, 28, 128)          512       ['3d_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3d_identity_block_relu2 (A  (None, 28, 28, 128)          0         ['3d_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 3d_identity_block_conv3 (C  (None, 28, 28, 512)          66048     ['3d_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 3d_identity_block_bn3 (Bat  (None, 28, 28, 512)          2048      ['3d_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 3d_identity_block_add (Add  (None, 28, 28, 512)          0         ['3d_identity_block_bn3[0][0]'
 )                                                                  , '3c_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 3d_identity_block_relu4 (A  (None, 28, 28, 512)          0         ['3d_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4a_conv_block_conv1 (Conv2  (None, 14, 14, 256)          131328    ['3d_identity_block_relu4[0][0
 D)                                                                 ]']                           
                                                                                                  
 4a_conv_block_bn1 (BatchNo  (None, 14, 14, 256)          1024      ['4a_conv_block_conv1[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 4a_conv_block_relu1 (Activ  (None, 14, 14, 256)          0         ['4a_conv_block_bn1[0][0]']   
 ation)                                                                                           
                                                                                                  
 4a_conv_block_conv2 (Conv2  (None, 14, 14, 256)          590080    ['4a_conv_block_relu1[0][0]'] 
 D)                                                                                               
                                                                                                  
 4a_conv_block_bn2 (BatchNo  (None, 14, 14, 256)          1024      ['4a_conv_block_conv2[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 4a_conv_block_relu2 (Activ  (None, 14, 14, 256)          0         ['4a_conv_block_bn2[0][0]']   
 ation)                                                                                           
                                                                                                  
 4a_conv_block_conv3 (Conv2  (None, 14, 14, 1024)         263168    ['4a_conv_block_relu2[0][0]'] 
 D)                                                                                               
                                                                                                  
 4a_conv_block_res_conv (Co  (None, 14, 14, 1024)         525312    ['3d_identity_block_relu4[0][0
 nv2D)                                                              ]']                           
                                                                                                  
 4a_conv_block_bn3 (BatchNo  (None, 14, 14, 1024)         4096      ['4a_conv_block_conv3[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 4a_conv_block_res_bn (Batc  (None, 14, 14, 1024)         4096      ['4a_conv_block_res_conv[0][0]
 hNormalization)                                                    ']                            
                                                                                                  
 4a_conv_block_add (Add)     (None, 14, 14, 1024)         0         ['4a_conv_block_bn3[0][0]',   
                                                                     '4a_conv_block_res_bn[0][0]']
                                                                                                  
 4a_conv_block_relu4 (Activ  (None, 14, 14, 1024)         0         ['4a_conv_block_add[0][0]']   
 ation)                                                                                           
                                                                                                  
 4b_identity_block_conv1 (C  (None, 14, 14, 256)          262400    ['4a_conv_block_relu4[0][0]'] 
 onv2D)                                                                                           
                                                                                                  
 4b_identity_block_bn1 (Bat  (None, 14, 14, 256)          1024      ['4b_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4b_identity_block_relu1 (A  (None, 14, 14, 256)          0         ['4b_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4b_identity_block_conv2 (C  (None, 14, 14, 256)          590080    ['4b_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4b_identity_block_bn2 (Bat  (None, 14, 14, 256)          1024      ['4b_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4b_identity_block_relu2 (A  (None, 14, 14, 256)          0         ['4b_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4b_identity_block_conv3 (C  (None, 14, 14, 1024)         263168    ['4b_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4b_identity_block_bn3 (Bat  (None, 14, 14, 1024)         4096      ['4b_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4b_identity_block_add (Add  (None, 14, 14, 1024)         0         ['4b_identity_block_bn3[0][0]'
 )                                                                  , '4a_conv_block_relu4[0][0]']
                                                                                                  
 4b_identity_block_relu4 (A  (None, 14, 14, 1024)         0         ['4b_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4c_identity_block_conv1 (C  (None, 14, 14, 256)          262400    ['4b_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4c_identity_block_bn1 (Bat  (None, 14, 14, 256)          1024      ['4c_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4c_identity_block_relu1 (A  (None, 14, 14, 256)          0         ['4c_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4c_identity_block_conv2 (C  (None, 14, 14, 256)          590080    ['4c_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4c_identity_block_bn2 (Bat  (None, 14, 14, 256)          1024      ['4c_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4c_identity_block_relu2 (A  (None, 14, 14, 256)          0         ['4c_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4c_identity_block_conv3 (C  (None, 14, 14, 1024)         263168    ['4c_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4c_identity_block_bn3 (Bat  (None, 14, 14, 1024)         4096      ['4c_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4c_identity_block_add (Add  (None, 14, 14, 1024)         0         ['4c_identity_block_bn3[0][0]'
 )                                                                  , '4b_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 4c_identity_block_relu4 (A  (None, 14, 14, 1024)         0         ['4c_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4d_identity_block_conv1 (C  (None, 14, 14, 256)          262400    ['4c_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4d_identity_block_bn1 (Bat  (None, 14, 14, 256)          1024      ['4d_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4d_identity_block_relu1 (A  (None, 14, 14, 256)          0         ['4d_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4d_identity_block_conv2 (C  (None, 14, 14, 256)          590080    ['4d_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4d_identity_block_bn2 (Bat  (None, 14, 14, 256)          1024      ['4d_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4d_identity_block_relu2 (A  (None, 14, 14, 256)          0         ['4d_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4d_identity_block_conv3 (C  (None, 14, 14, 1024)         263168    ['4d_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4d_identity_block_bn3 (Bat  (None, 14, 14, 1024)         4096      ['4d_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4d_identity_block_add (Add  (None, 14, 14, 1024)         0         ['4d_identity_block_bn3[0][0]'
 )                                                                  , '4c_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 4d_identity_block_relu4 (A  (None, 14, 14, 1024)         0         ['4d_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4e_identity_block_conv1 (C  (None, 14, 14, 256)          262400    ['4d_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4e_identity_block_bn1 (Bat  (None, 14, 14, 256)          1024      ['4e_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4e_identity_block_relu1 (A  (None, 14, 14, 256)          0         ['4e_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4e_identity_block_conv2 (C  (None, 14, 14, 256)          590080    ['4e_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4e_identity_block_bn2 (Bat  (None, 14, 14, 256)          1024      ['4e_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4e_identity_block_relu2 (A  (None, 14, 14, 256)          0         ['4e_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4e_identity_block_conv3 (C  (None, 14, 14, 1024)         263168    ['4e_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4e_identity_block_bn3 (Bat  (None, 14, 14, 1024)         4096      ['4e_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4e_identity_block_add (Add  (None, 14, 14, 1024)         0         ['4e_identity_block_bn3[0][0]'
 )                                                                  , '4d_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 4e_identity_block_relu4 (A  (None, 14, 14, 1024)         0         ['4e_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4f_identity_block_conv1 (C  (None, 14, 14, 256)          262400    ['4e_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4f_identity_block_bn1 (Bat  (None, 14, 14, 256)          1024      ['4f_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4f_identity_block_relu1 (A  (None, 14, 14, 256)          0         ['4f_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4f_identity_block_conv2 (C  (None, 14, 14, 256)          590080    ['4f_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4f_identity_block_bn2 (Bat  (None, 14, 14, 256)          1024      ['4f_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4f_identity_block_relu2 (A  (None, 14, 14, 256)          0         ['4f_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 4f_identity_block_conv3 (C  (None, 14, 14, 1024)         263168    ['4f_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 4f_identity_block_bn3 (Bat  (None, 14, 14, 1024)         4096      ['4f_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 4f_identity_block_add (Add  (None, 14, 14, 1024)         0         ['4f_identity_block_bn3[0][0]'
 )                                                                  , '4e_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 4f_identity_block_relu4 (A  (None, 14, 14, 1024)         0         ['4f_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5a_conv_block_conv1 (Conv2  (None, 7, 7, 512)            524800    ['4f_identity_block_relu4[0][0
 D)                                                                 ]']                           
                                                                                                  
 5a_conv_block_bn1 (BatchNo  (None, 7, 7, 512)            2048      ['5a_conv_block_conv1[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 5a_conv_block_relu1 (Activ  (None, 7, 7, 512)            0         ['5a_conv_block_bn1[0][0]']   
 ation)                                                                                           
                                                                                                  
 5a_conv_block_conv2 (Conv2  (None, 7, 7, 512)            2359808   ['5a_conv_block_relu1[0][0]'] 
 D)                                                                                               
                                                                                                  
 5a_conv_block_bn2 (BatchNo  (None, 7, 7, 512)            2048      ['5a_conv_block_conv2[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 5a_conv_block_relu2 (Activ  (None, 7, 7, 512)            0         ['5a_conv_block_bn2[0][0]']   
 ation)                                                                                           
                                                                                                  
 5a_conv_block_conv3 (Conv2  (None, 7, 7, 2048)           1050624   ['5a_conv_block_relu2[0][0]'] 
 D)                                                                                               
                                                                                                  
 5a_conv_block_res_conv (Co  (None, 7, 7, 2048)           2099200   ['4f_identity_block_relu4[0][0
 nv2D)                                                              ]']                           
                                                                                                  
 5a_conv_block_bn3 (BatchNo  (None, 7, 7, 2048)           8192      ['5a_conv_block_conv3[0][0]'] 
 rmalization)                                                                                     
                                                                                                  
 5a_conv_block_res_bn (Batc  (None, 7, 7, 2048)           8192      ['5a_conv_block_res_conv[0][0]
 hNormalization)                                                    ']                            
                                                                                                  
 5a_conv_block_add (Add)     (None, 7, 7, 2048)           0         ['5a_conv_block_bn3[0][0]',   
                                                                     '5a_conv_block_res_bn[0][0]']
                                                                                                  
 5a_conv_block_relu4 (Activ  (None, 7, 7, 2048)           0         ['5a_conv_block_add[0][0]']   
 ation)                                                                                           
                                                                                                  
 5b_identity_block_conv1 (C  (None, 7, 7, 512)            1049088   ['5a_conv_block_relu4[0][0]'] 
 onv2D)                                                                                           
                                                                                                  
 5b_identity_block_bn1 (Bat  (None, 7, 7, 512)            2048      ['5b_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5b_identity_block_relu1 (A  (None, 7, 7, 512)            0         ['5b_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5b_identity_block_conv2 (C  (None, 7, 7, 512)            2359808   ['5b_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 5b_identity_block_bn2 (Bat  (None, 7, 7, 512)            2048      ['5b_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5b_identity_block_relu2 (A  (None, 7, 7, 512)            0         ['5b_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5b_identity_block_conv3 (C  (None, 7, 7, 2048)           1050624   ['5b_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 5b_identity_block_bn3 (Bat  (None, 7, 7, 2048)           8192      ['5b_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5b_identity_block_add (Add  (None, 7, 7, 2048)           0         ['5b_identity_block_bn3[0][0]'
 )                                                                  , '5a_conv_block_relu4[0][0]']
                                                                                                  
 5b_identity_block_relu4 (A  (None, 7, 7, 2048)           0         ['5b_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5c_identity_block_conv1 (C  (None, 7, 7, 512)            1049088   ['5b_identity_block_relu4[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 5c_identity_block_bn1 (Bat  (None, 7, 7, 512)            2048      ['5c_identity_block_conv1[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5c_identity_block_relu1 (A  (None, 7, 7, 512)            0         ['5c_identity_block_bn1[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5c_identity_block_conv2 (C  (None, 7, 7, 512)            2359808   ['5c_identity_block_relu1[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 5c_identity_block_bn2 (Bat  (None, 7, 7, 512)            2048      ['5c_identity_block_conv2[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5c_identity_block_relu2 (A  (None, 7, 7, 512)            0         ['5c_identity_block_bn2[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 5c_identity_block_conv3 (C  (None, 7, 7, 2048)           1050624   ['5c_identity_block_relu2[0][0
 onv2D)                                                             ]']                           
                                                                                                  
 5c_identity_block_bn3 (Bat  (None, 7, 7, 2048)           8192      ['5c_identity_block_conv3[0][0
 chNormalization)                                                   ]']                           
                                                                                                  
 5c_identity_block_add (Add  (None, 7, 7, 2048)           0         ['5c_identity_block_bn3[0][0]'
 )                                                                  , '5b_identity_block_relu4[0][
                                                                    0]']                          
                                                                                                  
 5c_identity_block_relu4 (A  (None, 7, 7, 2048)           0         ['5c_identity_block_add[0][0]'
 ctivation)                                                         ]                             
                                                                                                  
 avg_pool (AveragePooling2D  (None, 1, 1, 2048)           0         ['5c_identity_block_relu4[0][0
 )                                                                  ]']                           
                                                                                                  
 flatten_6 (Flatten)         (None, 2048)                 0         ['avg_pool[0][0]']            
                                                                                                  
 fc1000 (Dense)              (None, 1000)                 2049000   ['flatten_6[0][0]']           
                                                                                                  
==================================================================================================
Total params: 25636712 (97.80 MB)
Trainable params: 25583592 (97.59 MB)
Non-trainable params: 53120 (207.50 KB)
__________________________________________________________________________________________________

六、编译

在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:

损失函数(loss):用于衡量模型在训练期间的准确率。

优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。

指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。

#设置优化器,这里修改了学习率
opt=tf.keras.optimizers.Adam(learning_rate=1e-7)

model.compile(optimizer=opt,
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy']
)

七、训练模型

epochs=10

history=model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs
)

运行结果:

Epoch 1/10
57/57 [==============================] - 141s 2s/step - loss: 1.4295 - accuracy: 0.6858 - val_loss: 568.1717 - val_accuracy: 0.2655
Epoch 2/10
57/57 [==============================] - 127s 2s/step - loss: 0.5009 - accuracy: 0.8518 - val_loss: 15.5711 - val_accuracy: 0.2566
Epoch 3/10
57/57 [==============================] - 122s 2s/step - loss: 0.2234 - accuracy: 0.9159 - val_loss: 10.4333 - val_accuracy: 0.2566
Epoch 4/10
57/57 [==============================] - 121s 2s/step - loss: 0.1847 - accuracy: 0.9226 - val_loss: 1.3618 - val_accuracy: 0.7699
Epoch 5/10
57/57 [==============================] - 142s 2s/step - loss: 0.0681 - accuracy: 0.9757 - val_loss: 0.3556 - val_accuracy: 0.8938
Epoch 6/10
57/57 [==============================] - 125s 2s/step - loss: 0.0431 - accuracy: 0.9934 - val_loss: 0.1768 - val_accuracy: 0.9469
Epoch 7/10
57/57 [==============================] - 127s 2s/step - loss: 0.0094 - accuracy: 0.9978 - val_loss: 0.1479 - val_accuracy: 0.9735
Epoch 8/10
57/57 [==============================] - 125s 2s/step - loss: 0.0012 - accuracy: 1.0000 - val_loss: 0.1206 - val_accuracy: 0.9823
Epoch 9/10
57/57 [==============================] - 128s 2s/step - loss: 6.5304e-04 - accuracy: 1.0000 - val_loss: 0.1136 - val_accuracy: 0.9823
Epoch 10/10
57/57 [==============================] - 121s 2s/step - loss: 4.9506e-04 - accuracy: 1.0000 - val_loss: 0.1131 - val_accuracy: 0.9823

八、模型评估

acc=history.history['accuracy']
val_acc=history.history['val_accuracy']

loss=history.history['loss']
val_loss=history.history['val_loss']

epochs_range=range(epochs)

plt.figure(figsize=(12,4))
plt.suptitle("OreoCC")

plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc,label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss,label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

九、预测

import numpy as np
#采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(10,5))
plt.suptitle("OreoCC")

for images,labels in val_ds.take(1):
    for i in range(8):
        ax=plt.subplot(2,4,i+1)
        
        #显示图片
        plt.imshow(images[i].numpy().astype("uint8"))
        
        #需要给图片增加一个维度
        img_array=tf.expand_dims(images[i],0)
        
        #使用模型预测图片中的人物
        predictions=model.predict(img_array)
        plt.title(class_names[np.argmax(predictions)])
        
        plt.axis("off")

运行结果:

十、心得体会

学习了残差网络的由来及构成,成功利用TensorFlow建立resnet-50模型并对数据集进行了模型验证。

相关推荐
HPC_fac130520678161 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd3 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI8 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1238 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界9 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221519 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2519 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街10 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台10 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网