python函数式编程

高阶函数

变量可以指向函数

函数调用代码:

>>> abs(-10)
10

但是,如果只写abs呢?

>>> abs
<built-in function abs>

可见,abs(-10)是函数调用,而abs是函数本身。

要获得函数调用结果,我们可以把结果赋值给变量:

>>> x = abs(-10)
>>> x
10

但是,如果把函数本身赋值给变量呢?

>>> f = abs
>>> f
<built-in function abs>

结论:函数本身也可以赋值给变量,即:变量可以指向函数。

如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:

>>> f = abs
>>> f(-10)
10

说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。

传入函数

既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

一个最简单的高阶函数:

def add(x, y, f):
    return f(x) + f(y)

当我们调用add(-5, 6, abs)时,参数xyf分别接收-56abs,根据函数定义,我们可以推导计算过程为:

x = -5
y = 6
f = abs
f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
return 11

用代码验证一下:

def add(x, y, f):
    return f(x) + f(y)

print(add(-5, 6, abs))

map/reduce

map()函数接收两个参数,一个是函数,一个是Iterablemap将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

>>> def f(x):
...     return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个IteratorIterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

filter

filter()函数用于过滤序列。

map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
    return n % 2 == 1

list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):
    return s and s.strip()

list(filter(not_empty, ['A', '', 'B', None, 'C', '  ']))
# 结果: ['A', 'B', 'C']

sorted

ython内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

返回函数

def lazy_sum(*args):
    def sum():
        ax = 0
        for n in args:
            ax = ax + n
        return ax
    return sum

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>

调用函数f时,才真正计算求和的结果:

>>> f()
25

每次调用都会返回一个新的函数

>>> f1 = lazy_sum(1, 3, 5, 7, 9)
>>> f2 = lazy_sum(1, 3, 5, 7, 9)
>>> f1==f2
False

f1()f2()的调用结果互不影响。

闭包

注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。

另一个需要注意的问题是,返回的函数并没有立刻执行,而是直到调用了f()才执行。我们来看一个例子:

def count():
    fs = []
    for i in range(1, 4):
        def f():
             return i*i
        fs.append(f)
    return fs

f1, f2, f3 = count()

nonlocal

使用闭包,就是内层函数引用了外层函数的局部变量。如果只是读外层变量的值,我们会发现返回的闭包函数调用一切正常:

def inc():
    x = 0
    def fn():
        # 仅读取x的值:
        return x + 1
    return fn

f = inc()
print(f()) # 1
print(f()) # 1

但是,如果对外层变量赋值,由于Python解释器会把x当作函数fn()的局部变量,它会报错:

def inc():
    x = 0
    def fn():
        # nonlocal x
        x = x + 1
        return x
    return fn

f = inc()
print(f()) # 1
print(f()) # 2

原因是x作为局部变量并没有初始化,直接计算x+1是不行的。但我们其实是想引用inc()函数内部的x,所以需要在fn()函数内部加一个nonlocal x的声明。加上这个声明后,解释器把fn()x看作外层函数的局部变量,它已经被初始化了,可以正确计算x+1

匿名函数

>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25

装饰器

由于函数也是一个对象,而且函数对象可以被赋值给变量,所以,通过变量也能调用该函数。

>>> def now():
...     print('2024-6-1')
...
>>> f = now
>>> f()
2024-6-1

函数对象有一个__name__属性(注意:是前后各两个下划线),可以拿到函数的名字:

>>> now.__name__
'now'
>>> f.__name__
'now'

现在,假设我们要增强now()函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()函数的定义,这种在代码运行期间动态增加功能的方式,称之为"装饰器"(Decorator)。

本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:

def log(func):
    def wrapper(*args, **kw):
        print('call %s():' % func.__name__)
        return func(*args, **kw)
    return wrapper

观察上面的log,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:

@log
def now():
    print('2024-6-1')

调用now()函数,不仅会运行now()函数本身,还会在运行now()函数前打印一行日志:

>>> now()
call now():
2024-6-1

传参装饰器

如果decorator本身需要传入参数,那就需要编写一个返回decorator的高阶函数,写出来会更复杂。比如,要自定义log的文本:

def log(text):
    def decorator(func):
        def wrapper(*args, **kw):
            print('%s %s():' % (text, func.__name__))
            return func(*args, **kw)
        return wrapper
    return decorator

这个3层嵌套的decorator用法如下:

@log('execute')
def now():
    print('2024-6-1')

执行结果如下:

>>> now()
execute now():
2024-6-1

和两层嵌套的decorator相比,3层嵌套的效果是这样的:

>>> now = log('execute')(now)
相关推荐
dundunmm1 分钟前
机器学习之scikit-learn(简称 sklearn)
python·算法·机器学习·scikit-learn·sklearn·分类算法
古希腊掌管学习的神2 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
波音彬要多做3 分钟前
41 stack类与queue类
开发语言·数据结构·c++·学习·算法
Tlzns4 分钟前
Linux网络——UDP的运用
linux·网络·udp
码农土豆10 分钟前
PaddlePaddle飞桨Linux系统Docker版安装
linux·docker·paddlepaddle
Swift社区11 分钟前
Excel 列名称转换问题 Swift 解答
开发语言·excel·swift
一道微光15 分钟前
Mac的M2芯片运行lightgbm报错,其他python包可用,x86_x64架构运行
开发语言·python·macos
Hacker_xingchen15 分钟前
天融信Linux系统安全问题
linux·运维·系统安全
矛取矛求19 分钟前
QT的前景与互联网岗位发展
开发语言·qt
Leventure_轩先生20 分钟前
[WASAPI]从Qt MultipleMedia来看WASAPI
开发语言·qt