Leetcode Day18 股票买卖专题

买卖股票重要的部分就是状态转移, 通常是二维i,0/1代表第i天持有/不持有股票时的最大利润

Part 1: 不限制交易次数

122 每天都可买入卖出

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        # on day i, we have stock
        dp1 = [0] * len(prices)
        # on day i, we dont have stock
        dp2 = [0] * len(prices)
        dp1[0] = -prices[0] 
        for i in range(1, len(prices)):
            # 有 stock, 什么都不做 -> dp1
            # 无 stock ,什么都不做 -> dp2
            # 有stock卖了 -> dp2
            # 无stock, 买了 -> dp1
            dp1[i] = max(dp1[i-1], dp2[i-1] - prices[i])
            dp2[i] = max(dp2[i-1], dp1[i-1] + prices[i])
        return max(dp1 + dp2)

309 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)

只需改为dp1[i] = max(dp1[i-1], dp2[i-2] - prices[i]), 因为dp1[i]的第二部分代表买入, 买入的话必须是i-2的那一天没有股票

Part 2: 有交易限制

121 (一次) 一天买入, 未来一天卖出

反着遍历记录后缀最大即可

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        max_price = -1
        ans = -1
        for i in range(len(prices) - 1,-1, -1):
            if prices[i] > max_price:
                max_price = prices[i]
            ans = max(ans, max_price - prices[i])
        return ans 

123 (两次)

python 复制代码
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)

        # dp[i][j]: 第i天结束后的最大利润,j的含义如下:
        # 0: 第一次买入, 1: 第一次卖出, 2: 第二次买入, 3: 第二次卖出
        dp = [[0,0,0,0] for _ in range(n)]

        # 初始化第一天的状态
        dp[0] = [-prices[0], 0, -prices[0], 0]

        for i in range(1, n):
            # 第一次买入:保持前一天状态,或今天买入
            dp[i][0] = max(dp[i-1][0], -prices[i])

            # 第一次卖出:保持前一天状态,或今天卖出
            dp[i][1] = max(dp[i-1][1], prices[i] + dp[i-1][0])

            # 第二次买入:保持前一天状态,或今天买入(使用第一次卖出的利润)
            dp[i][2] = max(dp[i-1][2], -prices[i] + dp[i-1][1])

            # 第二次卖出:保持前一天状态,或今天卖出
            dp[i][3] = max(dp[i-1][3], prices[i] + dp[i-1][2])

        return dp[-1][-1]  # 返回最后一天第二次卖出的最大利润

188 最多k次

python 复制代码
class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if not prices or k == 0:
            return 0
        
        n = len(prices)
        # dp1[i][j] -> 第i天持有股票, 已经完成j次交易
        # dp2[i][j] -> 第i天没有股票, 已经完成j次交易
        dp1 = [[0 for _ in range(k + 1)] for _ in range(n)]
        dp2 = [[0 for _ in range(k + 1)] for _ in range(n)]
        
        # 初始化第一天的状态
        dp1[0][0] = -prices[0]
        
        # 初始化第一次交易的状态
        for i in range(1, n):
            dp1[i][0] = -prices[i]
        
        for i in range(1, n):
            for j in range(1, k + 1):
                # 持有股票的状态
                dp1[i][j] = max(dp1[i-1][j], dp2[i-1][j] - prices[i])
                
                # 不持有股票的状态
                dp2[i][j] = max(dp2[i-1][j], dp1[i-1][j-1] + prices[i])
        
        return max(dp2[-1])

代码基本上是正确的, 但是在初始化出了问题, 对于dp[i][0],不能全部初始化为-pirces[0], 因为第0天后可能会出现更低的价格

python 复制代码
class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:
        if not prices or k == 0:
            return 0
        
        n = len(prices)
        # dp1[i][j] -> 第i天持有股票, 已经完成j次交易
        # dp2[i][j] -> 第i天没有股票, 已经完成j次交易
        dp1 = [[-inf for _ in range(k + 1)] for _ in range(n)]
        dp2 = [[-inf for _ in range(k + 1)] for _ in range(n)]
        
        # 初始化第一天的状态
        cur_max = -inf
        for i in range(n):
            if -prices[i] > cur_max:
                cur_max = -prices[i]
            dp1[i][0] = cur_max
        
        for i in range(1, n):
            for j in range(1, k + 1):
                # 持有股票的状态
                dp1[i][j] = max(dp1[i-1][j], dp2[i-1][j] - prices[i])
                
                # 不持有股票的状态
                dp2[i][j] = max(dp2[i-1][j], dp1[i-1][j-1] + prices[i])
        
        return max(dp2[-1])

注意dp[i][0]的初始化, 和所有的初始最大利润应该为-inf

相关推荐
hrrrrb31 分钟前
【密码学】6. 消息认证和哈希函数
算法·密码学·哈希算法
西猫雷婶2 小时前
python学智能算法(三十六)|SVM-拉格朗日函数求解(中)-软边界
人工智能·python·算法·机器学习·支持向量机
小葡萄20255 小时前
VSCode 刷 LeetCode 算法题配置教程
vscode·算法·leetcode
天才测试猿7 小时前
Jmeter+ant+jenkins接口自动化测试框架
自动化测试·软件测试·python·jmeter·职场和发展·jenkins·接口测试
努力冲冲8 小时前
常用排序算法
java·算法·排序算法
夜斗小神社11 小时前
【LeetCode 热题 100】(六)矩阵
算法·leetcode·矩阵
天地一流殇12 小时前
SimBA算法实现过程
深度学习·算法·对抗攻击·黑盒
2501_9247306112 小时前
智慧城管复杂人流场景下识别准确率↑32%:陌讯多模态感知引擎实战解析
大数据·人工智能·算法·计算机视觉·目标跟踪·视觉检测·边缘计算
weixin_3077791313 小时前
C++实现MATLAB矩阵计算程序
开发语言·c++·算法·matlab·矩阵
学不动CV了13 小时前
FreeRTOS入门知识(初识RTOS任务调度)(三)
c语言·arm开发·stm32·单片机·物联网·算法·51单片机