springboot集成guava布隆过滤器

1.创建springboot项目,引入maven依赖

bash 复制代码
		<dependency>
			<groupId>com.google.guava</groupId>
			<artifactId>guava</artifactId>
			<version>23.0</version>
		</dependency>

2.创建guava布隆过滤器

bash 复制代码
@Component
public class GuavaFilter {
    //初始化一个常量
    public static final int _1W = 10000;
    //初始化guava过滤器的容器容量
    public static final int SIZE = 100 * _1W;
    //误报率
    public static double  fpp = 0.03;  //误报率
    //创建一个guava过滤器
    public static BloomFilter bloomFilter = BloomFilter.create(Funnels.integerFunnel(),SIZE,fpp);


    //向guava过滤器中添加100万个数据
    //验证不在这100万数据之外的10万个数据的误判率
    @PostConstruct
    public void guavaFilter(){
        for(int i=1;i<=SIZE;i++){
            bloomFilter.put(i);
        }
        List<Integer> list = new ArrayList<>();
        for(int i = SIZE+1;i<SIZE+10*_1W;i++){
            if(bloomFilter.mightContain(i)){
                System.out.println(i + "被误识别了");
                list.add(i);
            }
        }
        System.out.println("误识别个数为:" + list.size());
    }
}

3.启动程序,观察结果

误识别的个数为3033个,误识别率3033/1000000≈0.03

4.对于误判率的思考

代码里配置的误判率为0.03,这里就会有小伙伴问,误判率(hash冲突概率)不应该越低越好吗,那我配置成0.01或者0.00000000001可以吗?

我们debug一下guava布隆过滤器的源码,点进去这个creat方法,断点打到如下图所示的位置

我们先看误报率配置0.03的情况

想要误报率控制在0.03,比特数组的位数需要达到7298440并且使用5种hash算法

再看误报率配置0.01的情况

想要误报率控制在0.01,比特数组的位数需要达到9585058并且使用7种hash算法

再看误报率配置0.00000000001的情况

想要误报率控制在0.00000000001,比特数组的位数需要达到52717821并且使用37种hash算法

当我们把误报率配置成0.00000000001,重新启动下程序

5.布隆过滤器的数据流向

相关推荐
程序员爱钓鱼4 小时前
Go语言实战案例 — 工具开发篇:实现一个图片批量压缩工具
后端·google·go
ChinaRainbowSea6 小时前
7. LangChain4j + 记忆缓存详细说明
java·数据库·redis·后端·缓存·langchain·ai编程
舒一笑6 小时前
同步框架与底层消费机制解决方案梳理
后端·程序员
minh_coo6 小时前
Spring框架事件驱动架构核心注解之@EventListener
java·后端·spring·架构·intellij-idea
enjoy嚣士6 小时前
springboot 之 HTML与图片生成 (2)
spring boot·html转图片
白初&7 小时前
SpringBoot后端基础案例
java·spring boot·后端
再睡亿分钟!8 小时前
Spring MVC 的常用注解
java·开发语言·spring boot·spring
麦兜*9 小时前
MongoDB 常见错误解决方案:从连接失败到主从同步问题
java·数据库·spring boot·redis·mongodb·容器
计算机学姐9 小时前
基于Python的旅游数据分析可视化系统【2026最新】
vue.js·后端·python·数据分析·django·flask·旅游
该用户已不存在10 小时前
你没有听说过的7个Windows开发必备工具
前端·windows·后端