分类任务实现模型(投票式)集成代码模版
简介
本实验使用上一博客的深度学习分类模型训练代码模板-CSDN博客,自定义投票式集成,手动实现模型集成(投票法)的代码。最后通过tensorboard进行可视化,对每个基学习器的性能进行对比,直观的看出模型集成的作用。
代码
python
# -*- coding:utf-8 -*-
import os
import torch
import torchvision
import torchmetrics
import torch.nn as nn
import my_utils as utils
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
from torchensemble.utils import set_module
from torchensemble.voting import VotingClassifier
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
parser.add_argument("--data-path", default=r"E:\Pytorch-Tutorial-2nd\data\datasets\cifar10-office", type=str,
help="dataset path")
parser.add_argument("--model", default="resnet8", type=str, help="model name")
parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
parser.add_argument(
"-b", "--batch-size", default=128, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=200, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--opt", default="SGD", type=str, help="optimizer")
parser.add_argument("--random-seed", default=42, type=int, help="random seed")
parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-step-size", default=80, type=int, help="decrease lr every step-size epochs")
parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
parser.add_argument("--print-freq", default=80, type=int, help="print frequency")
parser.add_argument("--output-dir", default="./Result", type=str, help="path to save outputs")
parser.add_argument("--resume", default="", type=str, help="path of checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
return parser
def main():
args = get_args_parser().parse_args()
utils.setup_seed(args.random_seed)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = args.device
data_dir = args.data_path
result_dir = args.output_dir
# ------------------------------------ log ------------------------------------
logger, log_dir = utils.make_logger(result_dir)
writer = SummaryWriter(log_dir=log_dir)
# ------------------------------------ step1: dataset ------------------------------------
normMean = [0.4948052, 0.48568845, 0.44682974]
normStd = [0.24580306, 0.24236229, 0.2603115]
normTransform = transforms.Normalize(normMean, normStd)
train_transform = transforms.Compose([
transforms.Resize(32),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
normTransform
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
normTransform
])
# root变量下需要存放cifar-10-python.tar.gz 文件
# cifar-10-python.tar.gz可从 "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" 下载
train_set = torchvision.datasets.CIFAR10(root=data_dir, train=True, transform=train_transform, download=True)
test_set = torchvision.datasets.CIFAR10(root=data_dir, train=False, transform=valid_transform, download=True)
# 构建DataLoder
train_loader = DataLoader(dataset=train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers)
valid_loader = DataLoader(dataset=test_set, batch_size=args.batch_size, num_workers=args.workers)
# ------------------------------------ tep2: model ------------------------------------
model_base = utils.resnet20()
# model_base = utils.LeNet5()
model = MyEnsemble(estimator=model_base, n_estimators=3, logger=logger, device=device, args=args,
classes=classes, writer=writer, save_dir=log_dir)
model.set_optimizer(args.opt, lr=args.lr, weight_decay=args.weight_decay)
model.fit(train_loader, test_loader=valid_loader, epochs=args.epochs)
class MyEnsemble(VotingClassifier):
def __init__(self, **kwargs):
# logger, device, args, classes, writer
super(VotingClassifier, self).__init__(kwargs["estimator"], kwargs["n_estimators"])
self.logger = kwargs["logger"]
self.writer = kwargs["writer"]
self.device = kwargs["device"]
self.args = kwargs["args"]
self.classes = kwargs["classes"]
self.save_dir = kwargs["save_dir"]
@staticmethod
def save(model, save_dir, logger):
"""Implement model serialization to the specified directory."""
if save_dir is None:
save_dir = "./"
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
# Decide the base estimator name
if isinstance(model.base_estimator_, type):
base_estimator_name = model.base_estimator_.__name__
else:
base_estimator_name = model.base_estimator_.__class__.__name__
# {Ensemble_Model_Name}_{Base_Estimator_Name}_{n_estimators}
filename = "{}_{}_{}_ckpt.pth".format(
type(model).__name__,
base_estimator_name,
model.n_estimators,
)
# The real number of base estimators in some ensembles is not same as
# `n_estimators`.
state = {
"n_estimators": len(model.estimators_),
"model": model.state_dict(),
"_criterion": model._criterion,
}
save_dir = os.path.join(save_dir, filename)
logger.info("Saving the model to `{}`".format(save_dir))
# Save
torch.save(state, save_dir)
return
def fit(self, train_loader, epochs=100, log_interval=100, test_loader=None, save_model=True, save_dir=None, ):
# 模型、优化器、学习率调整器、评估器 列表创建
estimators = []
for _ in range(self.n_estimators):
estimators.append(self._make_estimator())
optimizers = []
schedulers = []
for i in range(self.n_estimators):
optimizers.append(set_module.set_optimizer(estimators[i],
self.optimizer_name, **self.optimizer_args))
scheduler_ = torch.optim.lr_scheduler.MultiStepLR(optimizers[i], milestones=[100, 150],
gamma=self.args.lr_gamma) # 设置学习率下降策略
# scheduler_ = torch.optim.lr_scheduler.StepLR(optimizers[i], step_size=self.args.lr_step_size,
# gamma=self.args.lr_gamma) # 设置学习率下降策略
schedulers.append(scheduler_)
acc_metrics = []
for i in range(self.n_estimators):
# task类型与任务一致
# num_classes与分类任务的类别数一致
acc_metrics.append(torchmetrics.Accuracy(task="multiclass", num_classes=len(self.classes)))
self._criterion = nn.CrossEntropyLoss()
# epoch循环迭代
best_acc = 0.
for epoch in range(epochs):
# training
for model_idx, (estimator, optimizer, scheduler) in enumerate(zip(estimators, optimizers, schedulers)):
loss_m_train, acc_m_train, mat_train = \
utils.ModelTrainerEnsemble.train_one_epoch(
train_loader, estimator, self._criterion, optimizer, scheduler, epoch,
self.device, self.args, self.logger, self.classes)
# 学习率更新
scheduler.step()
# 记录
self.writer.add_scalars('Loss_group', {'train_loss_{}'.format(model_idx):
loss_m_train.avg}, epoch)
self.writer.add_scalars('Accuracy_group', {'train_acc_{}'.format(model_idx):
acc_m_train.avg}, epoch)
self.writer.add_scalar('learning rate', scheduler.get_last_lr()[0], epoch)
# 训练混淆矩阵图
conf_mat_figure_train = utils.show_conf_mat(mat_train, classes, "train", save_dir, epoch=epoch,
verbose=epoch == epochs - 1, save=False)
self.writer.add_figure('confusion_matrix_train', conf_mat_figure_train, global_step=epoch)
# validate
loss_valid_meter, acc_valid, top1_group, mat_valid = \
utils.ModelTrainerEnsemble.evaluate(test_loader, estimators, self._criterion, self.device, self.classes)
# 日志
self.writer.add_scalars('Loss_group', {'valid_loss':
loss_valid_meter.avg}, epoch)
self.writer.add_scalars('Accuracy_group', {'valid_acc':
acc_valid * 100}, epoch)
# 验证混淆矩阵图
conf_mat_figure_valid = utils.show_conf_mat(mat_valid, classes, "valid", save_dir, epoch=epoch,
verbose=epoch == epochs - 1, save=False)
self.writer.add_figure('confusion_matrix_valid', conf_mat_figure_valid, global_step=epoch)
self.logger.info(
'Epoch: [{:0>3}/{:0>3}] '
'Train Loss avg: {loss_train:>6.4f} '
'Valid Loss avg: {loss_valid:>6.4f} '
'Train Acc@1 avg: {top1_train:>7.2f}% '
'Valid Acc@1 avg: {top1_valid:>7.2%} '
'LR: {lr}'.format(
epoch, self.args.epochs, loss_train=loss_m_train.avg, loss_valid=loss_valid_meter.avg,
top1_train=acc_m_train.avg, top1_valid=acc_valid, lr=schedulers[0].get_last_lr()[0]))
for model_idx, top1_meter in enumerate(top1_group):
self.writer.add_scalars('Accuracy_group',
{'valid_acc_{}'.format(model_idx): top1_meter.compute() * 100}, epoch)
if acc_valid > best_acc:
best_acc = acc_valid
self.estimators_ = nn.ModuleList()
self.estimators_.extend(estimators)
if save_model:
self.save(self, self.save_dir, self.logger)
if __name__ == "__main__":
main()
效果图
本实验采用3个学习器进行投票式集成,因此绘制了7条曲线,其中各学习器在训练和验证各有2条曲线,集成模型的结果通过 valid_acc输出(蓝色),通过下图可发现,集成模型与三个基学习器相比,分类准确率都能提高3-4百分点左右,是非常高的提升了。
参考
7.7 TorchEnsemble 模型集成库 · PyTorch实用教程(第二版) (tingsongyu.github.io)