INTERNAL ASSERT FAILED at “/pytorch/c10/cuda/CUDACachingAllocator.cpp“:983

NVML_SUCCESS == DriverAPI::get()->nvmlInit_v2_()

问题描述

在使用GPU运行模型(有其他人也在用这个GPU)并使用同一条数据反复调用时,偶尔 会出现下面的异常:

bash 复制代码
Traceback (most recent call last):
  File "/data/gpu_info.py", line 21, in <module>
    img = deepcopy(img)
  File "/data/envs/birefnet/lib/python3.10/copy.py", line 153, in deepcopy
    y = copier(memo)
  File "/data/envs/birefnet/lib/python3.10/site-packages/torch/_tensor.py", line 172, in __deepcopy__
    new_storage = self._typed_storage()._deepcopy(memo)
  File "/data/envs/birefnet/lib/python3.10/site-packages/torch/storage.py", line 1134, in _deepcopy
    return self._new_wrapped_storage(copy.deepcopy(self._untyped_storage, memo))
  File "/data/envs/birefnet/lib/python3.10/copy.py", line 153, in deepcopy
    y = copier(memo)
  File "/data/envs/birefnet/lib/python3.10/site-packages/torch/storage.py", line 239, in __deepcopy__
    new_storage = self.clone()
  File "/data/envs/birefnet/lib/python3.10/site-packages/torch/storage.py", line 253, in clone
    return type(self)(self.nbytes(), device=self.device).copy_(self)
RuntimeError: NVML_SUCCESS == DriverAPI::get()->nvmlInit_v2_() INTERNAL ASSERT FAILED at "/pytorch/c10/cuda/CUDACachingAllocator.cpp":983, please report a bug to PyTorch.

问题排查

nvidia-smi无法正常使用。由于某些客观原因,服务器不能重启,也就无法使显卡驱动恢复正常。

检查GPU资源

检查显存:随机用一个大尺寸的Tensor,塞进GPU显存中,反复复制,发现正在使用的显存剩余空间不多(不足4M)

问题解决

通过上面的方式找到容量够用的显存,将代码放在该GPU上运行,问题解决。

相关推荐
yuanyuan2o227 分钟前
【深度学习】全连接、卷积神经网络
人工智能·深度学习·cnn
八零后琐话32 分钟前
干货:Claude最新大招Cowork避坑!
人工智能
汗流浃背了吧,老弟!1 小时前
BPE 词表构建与编解码(英雄联盟-托儿索语料)
人工智能·深度学习
软件聚导航1 小时前
从 AI 画马到马年红包封面,我还做了一个小程序
人工智能·chatgpt
啊森要自信1 小时前
CANN ops-cv:AI 硬件端视觉算法推理训练的算子性能调优与实战应用详解
人工智能·算法·cann
要加油哦~1 小时前
AI | 实践教程 - ScreenCoder | 多agents前端代码生成
前端·javascript·人工智能
玄同7651 小时前
从 0 到 1:用 Python 开发 MCP 工具,让 AI 智能体拥有 “超能力”
开发语言·人工智能·python·agent·ai编程·mcp·trae
新缸中之脑1 小时前
用RedisVL构建长期记忆
人工智能
J_Xiong01171 小时前
【Agents篇】07:Agent 的行动模块——工具使用与具身执行
人工智能·ai agent
SEO_juper2 小时前
13个不容错过的SEO技巧,让您的网站可见度飙升
人工智能·seo·数字营销