【深度学习】学习笔记——局部极小值和鞍点(Datawhale X 李宏毅苹果树AI夏令营)

做深度学习的时候,损失不是只在局部极小值的梯度是0,还有可能是其他情况,比如鞍点,鞍点就是梯度为0且区别于局部极小值和局部极大值的点。

如果损失收敛在局部极小值,所在位置已经是损失最低的点了,但是鞍点旁边还是有路可以让损失更低,只要逃离鞍点,有可能让损失更低。

当损失函数复杂时,无法知道完整损失函数的样子,但是可以通过给定一组参数如 θ ′ \theta ' θ′,其附近的损失函数用泰勒级数近似写出来。
L ( θ ) ≈ L ( θ ′ ) + ( θ − θ ′ ) T g + 1 2 ( θ − θ ′ ) T H ( θ − θ ′ ) L(\theta) \approx L({\theta}')+(\theta-{\theta}')^Tg+\frac{1}{2}(\theta-{\theta}')^TH(\theta-{\theta}') L(θ)≈L(θ′)+(θ−θ′)Tg+21(θ−θ′)TH(θ−θ′)

算出一个海森矩阵后,不需要把它跟所有的 ( θ − θ ′ ) (\theta-{\theta}') (θ−θ′)都乘乘看,只要看海森矩阵 H H H的特征值。若 H H H的所有特征值都是正的, H H H为正定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) > 0 (\theta-{\theta}')^TH(\theta-{\theta}')>0 (θ−θ′)TH(θ−θ′)>0,临界点是局部极小值。若 H H H的所有特征值都是负的, H H H为负定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) < 0 (\theta-{\theta}')^TH(\theta-{\theta}')<0 (θ−θ′)TH(θ−θ′)<0,临界点是局部极大值。若 H H H的特征值有正有负,临界点是鞍点。

相关推荐
YRr YRr7 分钟前
深度学习:循环神经网络(RNN)详解
人工智能·rnn·深度学习
sp_fyf_202419 分钟前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
红客59720 分钟前
Transformer和BERT的区别
深度学习·bert·transformer
多吃轻食23 分钟前
大模型微调技术 --> 脉络
人工智能·深度学习·神经网络·自然语言处理·embedding
charles_vaez1 小时前
开源模型应用落地-glm模型小试-glm-4-9b-chat-快速体验(一)
深度学习·语言模型·自然语言处理
黑叶白树1 小时前
简单的签到程序 python笔记
笔记·python
@小博的博客1 小时前
C++初阶学习第十弹——深入讲解vector的迭代器失效
数据结构·c++·学习
YRr YRr1 小时前
深度学习:Transformer Decoder详解
人工智能·深度学习·transformer
Shy9604181 小时前
Bert完形填空
python·深度学习·bert
老艾的AI世界2 小时前
新一代AI换脸更自然,DeepLiveCam下载介绍(可直播)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai换脸·视频换脸·直播换脸·图片换脸