【深度学习】学习笔记——局部极小值和鞍点(Datawhale X 李宏毅苹果树AI夏令营)

做深度学习的时候,损失不是只在局部极小值的梯度是0,还有可能是其他情况,比如鞍点,鞍点就是梯度为0且区别于局部极小值和局部极大值的点。

如果损失收敛在局部极小值,所在位置已经是损失最低的点了,但是鞍点旁边还是有路可以让损失更低,只要逃离鞍点,有可能让损失更低。

当损失函数复杂时,无法知道完整损失函数的样子,但是可以通过给定一组参数如 θ ′ \theta ' θ′,其附近的损失函数用泰勒级数近似写出来。
L ( θ ) ≈ L ( θ ′ ) + ( θ − θ ′ ) T g + 1 2 ( θ − θ ′ ) T H ( θ − θ ′ ) L(\theta) \approx L({\theta}')+(\theta-{\theta}')^Tg+\frac{1}{2}(\theta-{\theta}')^TH(\theta-{\theta}') L(θ)≈L(θ′)+(θ−θ′)Tg+21(θ−θ′)TH(θ−θ′)

算出一个海森矩阵后,不需要把它跟所有的 ( θ − θ ′ ) (\theta-{\theta}') (θ−θ′)都乘乘看,只要看海森矩阵 H H H的特征值。若 H H H的所有特征值都是正的, H H H为正定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) > 0 (\theta-{\theta}')^TH(\theta-{\theta}')>0 (θ−θ′)TH(θ−θ′)>0,临界点是局部极小值。若 H H H的所有特征值都是负的, H H H为负定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) < 0 (\theta-{\theta}')^TH(\theta-{\theta}')<0 (θ−θ′)TH(θ−θ′)<0,临界点是局部极大值。若 H H H的特征值有正有负,临界点是鞍点。

相关推荐
小宋加油啊18 分钟前
多模态方法学习
学习·多模态
小猪佩奇TONY24 分钟前
OpenCL 学习(4)---- OpenCL 上下文和程序对象
学习
xian_wwq32 分钟前
【学习笔记】OAuth 2.0 安全攻防:从 Portswigger 六大实验看认证漏洞挖掘
笔记·学习·安全
babe小鑫36 分钟前
大数据运维与管理专业学习数据分析的必要性
大数据·运维·学习
山野万里_38 分钟前
B站DR_CAN【Advanced控制理论】课程笔记
笔记
2501_9011478342 分钟前
粉刷房子问题:从DP基础到空间极致优化学习笔记
笔记·学习·动态规划
时代的凡人43 分钟前
0215晨间笔记
笔记·晨间日记
im_AMBER1 小时前
Leetcode 122 二叉树的最近公共祖先 | 二叉搜索树迭代器
学习·算法·leetcode·二叉树
子午1 小时前
【宠物识别系统】Python+深度学习+人工智能+算法模型+图像识别+TensorFlow+2026计算机毕设项目
人工智能·python·深度学习
CappuccinoRose1 小时前
CSS 语法学习文档(十一)
前端·css·学习·表单控件