【深度学习】学习笔记——局部极小值和鞍点(Datawhale X 李宏毅苹果树AI夏令营)

做深度学习的时候,损失不是只在局部极小值的梯度是0,还有可能是其他情况,比如鞍点,鞍点就是梯度为0且区别于局部极小值和局部极大值的点。

如果损失收敛在局部极小值,所在位置已经是损失最低的点了,但是鞍点旁边还是有路可以让损失更低,只要逃离鞍点,有可能让损失更低。

当损失函数复杂时,无法知道完整损失函数的样子,但是可以通过给定一组参数如 θ ′ \theta ' θ′,其附近的损失函数用泰勒级数近似写出来。
L ( θ ) ≈ L ( θ ′ ) + ( θ − θ ′ ) T g + 1 2 ( θ − θ ′ ) T H ( θ − θ ′ ) L(\theta) \approx L({\theta}')+(\theta-{\theta}')^Tg+\frac{1}{2}(\theta-{\theta}')^TH(\theta-{\theta}') L(θ)≈L(θ′)+(θ−θ′)Tg+21(θ−θ′)TH(θ−θ′)

算出一个海森矩阵后,不需要把它跟所有的 ( θ − θ ′ ) (\theta-{\theta}') (θ−θ′)都乘乘看,只要看海森矩阵 H H H的特征值。若 H H H的所有特征值都是正的, H H H为正定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) > 0 (\theta-{\theta}')^TH(\theta-{\theta}')>0 (θ−θ′)TH(θ−θ′)>0,临界点是局部极小值。若 H H H的所有特征值都是负的, H H H为负定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) < 0 (\theta-{\theta}')^TH(\theta-{\theta}')<0 (θ−θ′)TH(θ−θ′)<0,临界点是局部极大值。若 H H H的特征值有正有负,临界点是鞍点。

相关推荐
靴子学长3 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
南宫生5 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
sanguine__5 小时前
Web APIs学习 (操作DOM BOM)
学习
冷眼看人间恩怨5 小时前
【Qt笔记】QDockWidget控件详解
c++·笔记·qt·qdockwidget
苏言の狗7 小时前
Pytorch中关于Tensor的操作
人工智能·pytorch·python·深度学习·机器学习
数据的世界017 小时前
.NET开发人员学习书籍推荐
学习·.net
四口鲸鱼爱吃盐7 小时前
CVPR2024 | 通过集成渐近正态分布学习实现强可迁移对抗攻击
学习
paixiaoxin9 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
weixin_515202499 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习