【深度学习】学习笔记——局部极小值和鞍点(Datawhale X 李宏毅苹果树AI夏令营)

做深度学习的时候,损失不是只在局部极小值的梯度是0,还有可能是其他情况,比如鞍点,鞍点就是梯度为0且区别于局部极小值和局部极大值的点。

如果损失收敛在局部极小值,所在位置已经是损失最低的点了,但是鞍点旁边还是有路可以让损失更低,只要逃离鞍点,有可能让损失更低。

当损失函数复杂时,无法知道完整损失函数的样子,但是可以通过给定一组参数如 θ ′ \theta ' θ′,其附近的损失函数用泰勒级数近似写出来。
L ( θ ) ≈ L ( θ ′ ) + ( θ − θ ′ ) T g + 1 2 ( θ − θ ′ ) T H ( θ − θ ′ ) L(\theta) \approx L({\theta}')+(\theta-{\theta}')^Tg+\frac{1}{2}(\theta-{\theta}')^TH(\theta-{\theta}') L(θ)≈L(θ′)+(θ−θ′)Tg+21(θ−θ′)TH(θ−θ′)

算出一个海森矩阵后,不需要把它跟所有的 ( θ − θ ′ ) (\theta-{\theta}') (θ−θ′)都乘乘看,只要看海森矩阵 H H H的特征值。若 H H H的所有特征值都是正的, H H H为正定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) > 0 (\theta-{\theta}')^TH(\theta-{\theta}')>0 (θ−θ′)TH(θ−θ′)>0,临界点是局部极小值。若 H H H的所有特征值都是负的, H H H为负定矩阵,则 ( θ − θ ′ ) T H ( θ − θ ′ ) < 0 (\theta-{\theta}')^TH(\theta-{\theta}')<0 (θ−θ′)TH(θ−θ′)<0,临界点是局部极大值。若 H H H的特征值有正有负,临界点是鞍点。

相关推荐
龙腾AI白云1 分钟前
数字孪生应用于特种设备领域的技术难点
深度学习
咚咚王者9 分钟前
人工智能之核心基础 机器学习 第二十章 深度学习入门
人工智能·深度学习·机器学习
鄭郑19 分钟前
【Playwright学习笔记 07】其它用户视觉定位的方法
笔记·学习
LYS_061822 分钟前
寒假学习(5)(C语言5+模数电5)
c语言·学习·模数电
小汤圆不甜不要钱25 分钟前
「Datawhale」RAG技术全栈指南 Task 3
人工智能·深度学习·机器学习·rag
火云洞红孩儿40 分钟前
2026年,用PyMe可视化编程重塑Python学习
开发语言·python·学习
阿豪Jeremy42 分钟前
LlamaFactory微调Qwen3-0.6B大模型实验整理——调一个人物领域专属的模型
人工智能·深度学习·机器学习
栗少1 小时前
英语逻辑词
学习
赤狐先生1 小时前
第三步--根据python基础语法完成一个简单的深度学习模拟
开发语言·python·深度学习
cskywit1 小时前
[Nature 2026]AFLoc:一种用于通用无标注病理局部定位的多模态视觉‑语言模型
人工智能·深度学习·语言模型