效率跃升16倍!火山引擎ByteHouse助力销售数据平台复杂查询效率大幅提高

更多技术交流、求职机会,欢迎关注字节跳动数据平台 微信公众号 ,**回复【1】**进入官方交流群。
销售数据,是反映市场趋势、消费者行为以及产品表现的重要指标,也是企业做出精准决策的关键依据。因此,对销售数据进行全面利用、高效分析与合规管理,在企业经营中占据着重要地位。
为了更高效、安全地使用销售数据,某公司引入了开源ClickHouse作为数据分析引擎,将分散的销售数据统一到一套可视化分析平台中,并采用鉴权ACL模式来精细化管理企业内部员工的看数、用数权限。
但实际上,该公司销售数据平台在引入鉴权ACL后,出现了性能不足、用户体验受损的状况。其一,ClikHouse的性能难以满足复杂且量级巨大的查询需求,使得集群复杂恶化;其二,ClickHouse集群的CPU使用率长期处于打满状态对用户体验造成影响。
为了解决以上问题,在复杂查询领域具备显著优势且完全兼容ClickHouse的ByteHouse成为该公司迁移首选。
据了解,ByteHouse支持优化器和MPP执行模型,能够较好地支持复杂join与聚合计算的场景。其中,ByteHouse 的优化器在RBO与CBO方向上分别进行了大量的自研优化,并且实现了动态 Filter 下推、物化视图改写、计划复用以及结果复用等高阶能力。从而能够根据表的结构、索引等信息生成最优的查询执行计划,提高查询执行效率,减少资源消耗,整体上提升了ByteHouse在复杂场景下的查询性能。
在ByteHouse的支持下,目前该公司在销售数据的非ACL查询和ACL查询两个方向上,都实现了查询效率的显著提升。以ACL查询的60M广告客户DI场景为例,查询效率已经从从优化前的16秒大幅缩短至如今的1秒,效率提升高达16倍。

抽取该公司销售平台某数据集测试结果
作为新一代云原生数仓产品,ByteHouse在离线、在线复杂分析性能、便捷弹性扩缩容、全场景分析引擎等核心能力上持续优化,并已在互联网、游戏、金融、气象等领域广泛应用。未来,ByteHouse持续以卓越的数据分析能力,为更多业务系统赋能,助力企业数智化转型升级。
点击跳转 火山引擎云原生数据仓库ByteHouse 了解更多。

相关推荐
初恋叫萱萱17 分钟前
模型瘦身实战:用 `cann-model-compression-toolkit` 实现高效 INT8 量化
大数据
Σίσυφος190018 分钟前
PCL法向量估计 之 方向约束法向量(Orientation Guided Normal)
数据库
老毛肚21 分钟前
手写mybatis
java·数据库·mybatis
海山数据库26 分钟前
移动云大云海山数据库(He3DB)postgresql_anonymizer插件原理介绍与安装
数据库·he3db·大云海山数据库·移动云数据库
云飞云共享云桌面30 分钟前
高性能图形工作站的资源如何共享给10个SolidWorks研发设计用
linux·运维·服务器·前端·网络·数据库·人工智能
2501_9279935338 分钟前
SQL Server 2022安装详细教程(图文详解,非常详细)
数据库·sqlserver
星火s漫天39 分钟前
第一篇: 使用Docker部署flask项目(Flask + DB 容器化)
数据库·docker·flask
xcLeigh44 分钟前
Python 项目实战:用 Flask 实现 MySQL 数据库增删改查 API
数据库·python·mysql·flask·教程·python3
威迪斯特44 分钟前
Flask:轻量级Web框架的技术本质与工程实践
前端·数据库·后端·python·flask·开发框架·核心架构
xu_yule1 小时前
Redis存储(15)Redis的应用_分布式锁_Lua脚本/Redlock算法
数据库·redis·分布式