Pandas 8-数据筛选过滤

1. 基于条件筛选

1.1 单条件筛选

可以使用布尔索引来筛选满足特定条件的数据。

python 复制代码
import pandas as pd  
  
# 创建一个DataFrame  
data = {  
    'Name': ['Alice', 'Bob', 'Charlie', 'David'],    'Age': [24, 27, 22, 32],    'City': ['New York', 'Los Angeles', 'Chicago', 'Houston'],    'Score': [85, 92, 78, 88]}  
  
df = pd.DataFrame(data)  
print(df)  
  
# 筛选Age大于25的行  
df_filtered = df[df['Age'] > 25]  
print(df_filtered)  

输出:

复制代码
    Name  Age         City  Score1    Bob   27  Los Angeles     92  
3  David   32      Houston     88  
1.2 多条件筛选

可以使用逻辑运算符(&表示与,|表示或)来组合多个条件进行筛选。

python 复制代码
# 筛选Age大于25且Score大于80的行  
df_filtered_multi = df[(df['Age'] > 25) & (df['Score'] > 80)]  
print(df_filtered_multi)  

输出:

复制代码
    Name  Age         City  Score1    Bob   27  Los Angeles     92  
3  David   32      Houston     88  

2. 基于标签筛选

可以使用loc方法基于标签进行筛选。

2.1 单标签筛选
python 复制代码
# 筛选Name为'Alice'的行  
df_filtered_loc = df.loc[df['Name'] == 'Alice']  
print(df_filtered_loc)  

输出:

复制代码
    Name  Age      City  Score0  Alice   24  New York     85  
2.2 多标签筛选
python 复制代码
# 筛选Name为'Alice'或'Bob'的行  
df_filtered_loc_multi = df.loc[(df['Name'] == 'Alice') | (df['Name'] == 'Bob')]  
print(df_filtered_loc_multi)  

输出:

复制代码
    Name  Age         City  Score0  Alice   24     New York     85  
1    Bob   27  Los Angeles     92  

3. 基于位置筛选

可以使用iloc方法基于位置进行筛选。

3.1 单位置筛选
python 复制代码
# 筛选第一行  
df_filtered_iloc = df.iloc[0]  
print(df_filtered_iloc)  

输出:

复制代码
Name     Alice  
Age         24  
City  New York  
Score       85  
Name: 0, dtype: object  
3.2 多位置筛选
python 复制代码
# 筛选第一行和第三行  
df_filtered_iloc_multi = df.iloc[[0, 2]]  
print(df_filtered_iloc_multi)  

输出:

复制代码
      Name  Age     City  Score0    Alice   24  New York     85  
2  Charlie   22  Chicago     78  

4. 使用query方法筛选

Pandas提供了query方法,可以使用类似SQL的语法进行筛选。

python 复制代码
# 使用query方法筛选Age大于25的行  
df_filtered_query = df.query('Age > 25')  
print(df_filtered_query)  

输出:

复制代码
    Name  Age         City  Score1    Bob   27  Los Angeles     92  
3  David   32      Houston     88  
相关推荐
TwoAI7 小时前
Pandas 数据分析:从入门到精通的数据处理核心
数据挖掘·数据分析·pandas
万粉变现经纪人1 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘sympy’问题
python·beautifulsoup·pandas·scikit-learn·pyqt·pip·scipy
折翼的恶魔2 天前
数据分析:合并
python·数据分析·pandas
悟乙己2 天前
PySpark 与 Pandas 的较量:Databricks 中 SQL Server 到 Snowflake 的数据迁移之旅
数据库·pandas·pyspark
九章云极AladdinEdu2 天前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
万粉变现经纪人3 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘python-dateutil’问题
开发语言·ide·python·pycharm·pandas·pip·httpx
dlraba8023 天前
机器学习实战(二):Pandas 特征工程与模型协同进阶
人工智能·机器学习·pandas
Source.Liu3 天前
【Python自动化】 21.3 Pandas Series 核心数据结构完全指南
python·自动化·pandas
亦良Cool3 天前
001-Pandas的数据结构
数据结构·pandas
CodeCraft Studio5 天前
Excel处理控件Aspose.Cells教程:使用 Python 将 Pandas DataFrame 转换为 Excel
python·json·excel·pandas·csv·aspose·dataframe