Opencv 隔帧取数据解码速度优化

  • 实用tips,若使用opencv进行解码,代码作如下优化能极大提升解码速度:
复制代码
    cap = cv2.VideoCapture(file_path)
    videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # 1. decode all frames, time cost!
    sampledFrames = []
    for i in range(videolen):
        ret, frame = cap.read()
        # maybe first frame is empty
        if ret == False:
            continue
        img = frame[:, :, ::-1]
        sampledFrames.append(img)

    cap.release()

    # 2. get frame index
    frames_idx = [xxx]

    # 3. sample
    frames = np.array(sampledFrames)
    imgs = []
    for idx in frames_idx:
        imgbuf = frames[idx]
        img = Image.fromarray(imgbuf, mode='RGB')
        imgs.append(img)

优化后:

复制代码
    cap = cv2.VideoCapture(file_path)
    videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # 1. get frame index
    frames_idx = [xxx]

    # 2. decode target frame
    imgs = []
    for i in range(videolen):
        ret = cap.grab()
        # maybe first frame is empty
        if ret == False:
            continue  
        if frames_idx and i == frames_idx[0]:
            frames_idx.pop(0)
            ret, frame = cap.retrieve()
            if frame is None:
                break
            imgbuf = frame[:, :, ::-1]
            img = Image.fromarray(imgbuf, mode='RGB')
            imgs.append(img)
        if frames_idx == None:
            break
    cap.release()
相关推荐
KG_LLM图谱增强大模型26 分钟前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
AKAMAI27 分钟前
企业如何平衡AI创新与风险
人工智能·云原生·云计算
TDengine (老段)2 小时前
优化 TDengine IDMP 面板编辑的几种方法
人工智能·物联网·ai·时序数据库·tdengine·涛思数据
数据的世界012 小时前
Visual Studio 2026 正式发布:AI 原生 IDE 与性能革命的双向突破
ide·人工智能·visual studio
shayudiandian4 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
视界先声4 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼4 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest5 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c5 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能