Opencv 隔帧取数据解码速度优化

  • 实用tips,若使用opencv进行解码,代码作如下优化能极大提升解码速度:
复制代码
    cap = cv2.VideoCapture(file_path)
    videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # 1. decode all frames, time cost!
    sampledFrames = []
    for i in range(videolen):
        ret, frame = cap.read()
        # maybe first frame is empty
        if ret == False:
            continue
        img = frame[:, :, ::-1]
        sampledFrames.append(img)

    cap.release()

    # 2. get frame index
    frames_idx = [xxx]

    # 3. sample
    frames = np.array(sampledFrames)
    imgs = []
    for idx in frames_idx:
        imgbuf = frames[idx]
        img = Image.fromarray(imgbuf, mode='RGB')
        imgs.append(img)

优化后:

复制代码
    cap = cv2.VideoCapture(file_path)
    videolen = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # 1. get frame index
    frames_idx = [xxx]

    # 2. decode target frame
    imgs = []
    for i in range(videolen):
        ret = cap.grab()
        # maybe first frame is empty
        if ret == False:
            continue  
        if frames_idx and i == frames_idx[0]:
            frames_idx.pop(0)
            ret, frame = cap.retrieve()
            if frame is None:
                break
            imgbuf = frame[:, :, ::-1]
            img = Image.fromarray(imgbuf, mode='RGB')
            imgs.append(img)
        if frames_idx == None:
            break
    cap.release()
相关推荐
GISer_Jing几秒前
跨境营销前端AI应用业务领域
前端·人工智能·aigc
Ven%2 分钟前
从单轮问答到连贯对话:RAG多轮对话技术详解
人工智能·python·深度学习·神经网络·算法
OpenCSG5 分钟前
OpenCSG社区:激发城市AI主权创新引擎
人工智能·opencsg·agentichub
大厂技术总监下海10 分钟前
没有千卡GPU,如何从0到1构建可用LLM?nanoChat 全栈实践首次公开
人工智能·开源
机器之心10 分钟前
谁还敢说谷歌掉队?2025年,它打了一场漂亮的翻身仗
人工智能·openai
元智启11 分钟前
企业AI智能体加速产业重构:政策红利与场景落地双轮驱动——从技术验证到价值交付的范式跃迁
人工智能·重构
智算菩萨11 分钟前
强化学习从单代理到多代理系统的理论与算法架构综述
人工智能·算法·强化学习
San30.12 分钟前
从零到一:开启 LangChain 的 AI 工程化之旅
人工智能·langchain·node.js
机器之心14 分钟前
字节做了个 AI 手机,钉钉做了台 AI 主机
人工智能·openai
天一生水water14 分钟前
nano banana pro绘图示例
人工智能·智慧油田