计算机视觉之 SE 注意力模块

计算机视觉之 SE 注意力模块

一、简介

SEBlock 是一个自定义的神经网络模块,主要用于实现 Squeeze-and-Excitation(SE)注意力机制。SE 注意力机制通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。

原论文:《Squeeze-and-Excitation Networks

二、语法和参数

语法
python 复制代码
class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        ...
    def forward(self, x):
        ...
参数
  • in_channels:输入特征的通道数。
  • reduction:通道缩减比例,默认为 16。

三、实例

3.1 初始化和前向传播
  • 代码
python 复制代码
import torch
import torch.nn as nn

class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(SEBlock, self).__init__()
        reduced_channels = max(in_channels // reduction, 1)
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, reduced_channels, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(reduced_channels, in_channels, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, channels, _, _ = x.size()
        # Squeeze
        y = self.global_avg_pool(x).view(batch_size, channels)
        # Excitation
        y = self.fc(y).view(batch_size, channels, 1, 1)
        # Scale
        return x * y.expand_as(x)
  • 输出

    加权图像输出

3.2 应用在示例数据上
  • 代码
python 复制代码
import torch

# 创建示例输入数据
input_tensor = torch.randn(1, 64, 32, 32)  # (batch_size, in_channels, height, width)

# 初始化 SEBlock 模块
se_block = SEBlock(in_channels=64, reduction=16)

# 前向传播
output_tensor = se_block(input_tensor)
print(output_tensor.shape)
  • 输出

    torch.Size([1, 64, 32, 32])

四、注意事项

  1. SEBlock 模块通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。
  2. 在使用 SEBlock 时,确保输入特征的通道数和缩减比例设置合理,以避免计算开销过大。
  3. 该模块主要用于图像数据处理,适用于各种计算机视觉任务,如图像分类、目标检测等。

相关推荐
natide7 分钟前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农14 分钟前
码农的妇产科实习记录
android·java·人工智能
TechubNews22 分钟前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体35 分钟前
机器人的罪与罚
人工智能·机器人
三不原则41 分钟前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM1 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
会周易的程序员1 小时前
多模态AI 基于工业级编译技术的PLC数据结构解析与映射工具
数据结构·c++·人工智能·单例模式·信息可视化·架构
BlockWay1 小时前
WEEX 成为 LALIGA 西甲联赛香港及台湾地区官方区域合作伙伴
大数据·人工智能·安全
虹科网络安全1 小时前
艾体宝案例 | 从关系到语义:ArangoDB如何支撑高精度水军识别
人工智能
大霸王龙1 小时前
MinIO 对象存储系统架构图集
人工智能·llm·minio