计算机视觉之 SE 注意力模块

计算机视觉之 SE 注意力模块

一、简介

SEBlock 是一个自定义的神经网络模块,主要用于实现 Squeeze-and-Excitation(SE)注意力机制。SE 注意力机制通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。

原论文:《Squeeze-and-Excitation Networks

二、语法和参数

语法
python 复制代码
class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        ...
    def forward(self, x):
        ...
参数
  • in_channels:输入特征的通道数。
  • reduction:通道缩减比例,默认为 16。

三、实例

3.1 初始化和前向传播
  • 代码
python 复制代码
import torch
import torch.nn as nn

class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(SEBlock, self).__init__()
        reduced_channels = max(in_channels // reduction, 1)
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, reduced_channels, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(reduced_channels, in_channels, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, channels, _, _ = x.size()
        # Squeeze
        y = self.global_avg_pool(x).view(batch_size, channels)
        # Excitation
        y = self.fc(y).view(batch_size, channels, 1, 1)
        # Scale
        return x * y.expand_as(x)
  • 输出

    加权图像输出

3.2 应用在示例数据上
  • 代码
python 复制代码
import torch

# 创建示例输入数据
input_tensor = torch.randn(1, 64, 32, 32)  # (batch_size, in_channels, height, width)

# 初始化 SEBlock 模块
se_block = SEBlock(in_channels=64, reduction=16)

# 前向传播
output_tensor = se_block(input_tensor)
print(output_tensor.shape)
  • 输出

    torch.Size([1, 64, 32, 32])

四、注意事项

  1. SEBlock 模块通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。
  2. 在使用 SEBlock 时,确保输入特征的通道数和缩减比例设置合理,以避免计算开销过大。
  3. 该模块主要用于图像数据处理,适用于各种计算机视觉任务,如图像分类、目标检测等。

相关推荐
飞哥数智坊17 分钟前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠1 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶4 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云4 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术4 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新5 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心5 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算5 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位5 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程
算家计算5 小时前
OpenAI最强编程模型GPT-5-Codex发布!可独立编程7小时,编程效率提升10倍
人工智能·ai编程·资讯