计算机视觉之 SE 注意力模块

计算机视觉之 SE 注意力模块

一、简介

SEBlock 是一个自定义的神经网络模块,主要用于实现 Squeeze-and-Excitation(SE)注意力机制。SE 注意力机制通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。

原论文:《Squeeze-and-Excitation Networks

二、语法和参数

语法
python 复制代码
class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        ...
    def forward(self, x):
        ...
参数
  • in_channels:输入特征的通道数。
  • reduction:通道缩减比例,默认为 16。

三、实例

3.1 初始化和前向传播
  • 代码
python 复制代码
import torch
import torch.nn as nn

class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(SEBlock, self).__init__()
        reduced_channels = max(in_channels // reduction, 1)
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, reduced_channels, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(reduced_channels, in_channels, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, channels, _, _ = x.size()
        # Squeeze
        y = self.global_avg_pool(x).view(batch_size, channels)
        # Excitation
        y = self.fc(y).view(batch_size, channels, 1, 1)
        # Scale
        return x * y.expand_as(x)
  • 输出

    加权图像输出

3.2 应用在示例数据上
  • 代码
python 复制代码
import torch

# 创建示例输入数据
input_tensor = torch.randn(1, 64, 32, 32)  # (batch_size, in_channels, height, width)

# 初始化 SEBlock 模块
se_block = SEBlock(in_channels=64, reduction=16)

# 前向传播
output_tensor = se_block(input_tensor)
print(output_tensor.shape)
  • 输出

    torch.Size([1, 64, 32, 32])

四、注意事项

  1. SEBlock 模块通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。
  2. 在使用 SEBlock 时,确保输入特征的通道数和缩减比例设置合理,以避免计算开销过大。
  3. 该模块主要用于图像数据处理,适用于各种计算机视觉任务,如图像分类、目标检测等。

相关推荐
且去填词15 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续30115 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_3975780215 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员16 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder16 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me16 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者16 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
阿部多瑞 ABU16 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作
极海拾贝17 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派17 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习