计算机视觉之 SE 注意力模块

计算机视觉之 SE 注意力模块

一、简介

SEBlock 是一个自定义的神经网络模块,主要用于实现 Squeeze-and-Excitation(SE)注意力机制。SE 注意力机制通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。

原论文:《Squeeze-and-Excitation Networks

二、语法和参数

语法
python 复制代码
class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        ...
    def forward(self, x):
        ...
参数
  • in_channels:输入特征的通道数。
  • reduction:通道缩减比例,默认为 16。

三、实例

3.1 初始化和前向传播
  • 代码
python 复制代码
import torch
import torch.nn as nn

class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super(SEBlock, self).__init__()
        reduced_channels = max(in_channels // reduction, 1)
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(in_channels, reduced_channels, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(reduced_channels, in_channels, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        batch_size, channels, _, _ = x.size()
        # Squeeze
        y = self.global_avg_pool(x).view(batch_size, channels)
        # Excitation
        y = self.fc(y).view(batch_size, channels, 1, 1)
        # Scale
        return x * y.expand_as(x)
  • 输出

    加权图像输出

3.2 应用在示例数据上
  • 代码
python 复制代码
import torch

# 创建示例输入数据
input_tensor = torch.randn(1, 64, 32, 32)  # (batch_size, in_channels, height, width)

# 初始化 SEBlock 模块
se_block = SEBlock(in_channels=64, reduction=16)

# 前向传播
output_tensor = se_block(input_tensor)
print(output_tensor.shape)
  • 输出

    torch.Size([1, 64, 32, 32])

四、注意事项

  1. SEBlock 模块通过全局平均池化和全连接层来重新校准通道的权重,从而增强模型的表达能力。
  2. 在使用 SEBlock 时,确保输入特征的通道数和缩减比例设置合理,以避免计算开销过大。
  3. 该模块主要用于图像数据处理,适用于各种计算机视觉任务,如图像分类、目标检测等。

相关推荐
szxinmai主板定制专家1 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan2 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交2 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc4 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全
techdashen4 小时前
圆桌讨论:Coding Agent or AI IDE 的现状和未来发展
ide·人工智能
CV实验室5 小时前
TIP 2025 | 哈工大&哈佛等提出 TripleMixer:攻克雨雪雾干扰的3D点云去噪网络!
人工智能·计算机视觉·3d·论文
余俊晖6 小时前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树6 小时前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白8 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场8 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉