【大模型】GPT系列模型基础

前言:GPT整体上与transformer结构相似,但只用了decoder部分。

目录

  • [1. GPT](#1. GPT)
  • [2. GPT2](#2. GPT2)
  • [3. GPT3](#3. GPT3)
  • [4. 知识补充](#4. 知识补充)
    • [4.1 下游任务实现方式](#4.1 下游任务实现方式)
    • [4.2 sparse attention](#4.2 sparse attention)

1. GPT

  • 预训练:无监督,根据前k个词预测下一个词的概率。
  • 微调: 有监督,目标函数=有监督的目标函数+λ*无监督的目标函数。
  • 核心结构:主要由12个transformer的decoder组成,并且只用了mask multi-head attention

2. GPT2

与GPT1相比做了以下改进:

  • 在attention前做了Layer Norm,使得模型输入更稳定
  • 输入序列的最大长度从 512 扩充到 1024。
  • 使用预训练+zero-shot的方式,而不是预训练+有监督微调,zero-shot通过prompt实现。

3. GPT3

与GPT2相比做了以下优化:

  • zero-shot变few-shot
  • attention变为了sparse attention

4. 知识补充

4.1 下游任务实现方式

  • fine-tuning:预训练 + 训练样本计算loss更新梯度,然后预测。会更新模型参数
  • zero-shot:预训练 + task description + prompt,直接预测。不更新模型参数
  • one-shot:预训练 + task description + example + prompt,预测。不更新模型参数
  • few-shot :又称为in-context learning,预训练 + task description + examples + prompt,预测。不更新模型参数

4.2 sparse attention

  • dense attention :token之间两两计算注意力,时间复杂度为 O ( N 2 ) {O(N^2)} O(N2)
  • sparse attention :token只与其他token的一个子集计算注意力。对于某一个token,只计算和他相对距离小于k,以及距离为2k,3k...nk的token计算,时间复杂度为 O ( N ∗ l o g ( N ) ) {O(N*log(N))} O(N∗log(N))
相关推荐
AIBox3651 天前
国内可用 ChatGPT 中文版网站推荐(2025年11月最新)
人工智能·gpt·chatgpt
斯外戈的小白1 天前
【NLP】基础概念+RNN架构
rnn·自然语言处理·分类
F***c3251 天前
React自然语言处理应用
前端·react.js·自然语言处理
Ma0407131 天前
GPT:生成式预训练变形金刚
gpt
智算菩萨2 天前
走向通用智能的大语言模型:具身、符号落地、因果与记忆的统一认知视角
人工智能·语言模型·自然语言处理
极客BIM工作室2 天前
BERT模型中词汇表向量与网络权重:从属关系与不可替代的功能分工
人工智能·自然语言处理·bert
搬砖者(视觉算法工程师)2 天前
检索增强生成(RAG)与大语言模型微调(Fine-tuning)的差异、优势及使用场景详解
人工智能·语言模型·自然语言处理
ToTensor2 天前
Tree of Thoughts:让大语言模型像人类一样思考
人工智能·语言模型·自然语言处理
黑客思维者2 天前
为什么大语言模型需要海量训练数据?
人工智能·语言模型·自然语言处理
AI大模型学徒3 天前
NLP基础(九)_N-gram模型
人工智能·自然语言处理·nlp·n-gram