【大模型】GPT系列模型基础

前言:GPT整体上与transformer结构相似,但只用了decoder部分。

目录

  • [1. GPT](#1. GPT)
  • [2. GPT2](#2. GPT2)
  • [3. GPT3](#3. GPT3)
  • [4. 知识补充](#4. 知识补充)
    • [4.1 下游任务实现方式](#4.1 下游任务实现方式)
    • [4.2 sparse attention](#4.2 sparse attention)

1. GPT

  • 预训练:无监督,根据前k个词预测下一个词的概率。
  • 微调: 有监督,目标函数=有监督的目标函数+λ*无监督的目标函数。
  • 核心结构:主要由12个transformer的decoder组成,并且只用了mask multi-head attention

2. GPT2

与GPT1相比做了以下改进:

  • 在attention前做了Layer Norm,使得模型输入更稳定
  • 输入序列的最大长度从 512 扩充到 1024。
  • 使用预训练+zero-shot的方式,而不是预训练+有监督微调,zero-shot通过prompt实现。

3. GPT3

与GPT2相比做了以下优化:

  • zero-shot变few-shot
  • attention变为了sparse attention

4. 知识补充

4.1 下游任务实现方式

  • fine-tuning:预训练 + 训练样本计算loss更新梯度,然后预测。会更新模型参数
  • zero-shot:预训练 + task description + prompt,直接预测。不更新模型参数
  • one-shot:预训练 + task description + example + prompt,预测。不更新模型参数
  • few-shot :又称为in-context learning,预训练 + task description + examples + prompt,预测。不更新模型参数

4.2 sparse attention

  • dense attention :token之间两两计算注意力,时间复杂度为 O ( N 2 ) {O(N^2)} O(N2)
  • sparse attention :token只与其他token的一个子集计算注意力。对于某一个token,只计算和他相对距离小于k,以及距离为2k,3k...nk的token计算,时间复杂度为 O ( N ∗ l o g ( N ) ) {O(N*log(N))} O(N∗log(N))
相关推荐
mit6.82412 小时前
[nanoGPT] 数据预处理与分词 | BPE配合`tiktoken`
gpt
七宝大爷13 小时前
大模型是什么?从 GPT 到 LLaMA 的核心概念解析
gpt·llama
一只落魄的蜂鸟13 小时前
《图解技术体系》Wonderful talk AI ~~GPT
人工智能·gpt
Francek Chen13 小时前
【自然语言处理】预训练01:词嵌入(word2vec)
人工智能·自然语言处理·word2vec
Coovally AI模型快速验证14 小时前
突破性开源模型DepthLM问世:视觉语言模型首次实现精准三维空间理解
人工智能·语言模型·自然语言处理·ocr·音视频·ai编程
加油吧zkf1 天前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
C7211BA1 天前
世界模型和大语言模型的区别
人工智能·语言模型·自然语言处理
Ai173163915791 天前
英伟达RTX 6000 Ada 和L40S 对比,哪个更适合做深度学习?
图像处理·人工智能·gpt·深度学习·神经网络·机器学习·电脑
mit6.8241 天前
[nanoGPT] GPT模型架构 | `LayerNorm` | `CausalSelfAttention` |`MLP` | `Block`
gpt
青云交1 天前
Java 大视界 -- Java 大数据机器学习模型在智能客服多轮对话系统中的优化策略
深度学习·自然语言处理·智能客服·数据预处理·机器学习模型·java 大数据·多轮对话系统