【大模型】GPT系列模型基础

前言:GPT整体上与transformer结构相似,但只用了decoder部分。

目录

  • [1. GPT](#1. GPT)
  • [2. GPT2](#2. GPT2)
  • [3. GPT3](#3. GPT3)
  • [4. 知识补充](#4. 知识补充)
    • [4.1 下游任务实现方式](#4.1 下游任务实现方式)
    • [4.2 sparse attention](#4.2 sparse attention)

1. GPT

  • 预训练:无监督,根据前k个词预测下一个词的概率。
  • 微调: 有监督,目标函数=有监督的目标函数+λ*无监督的目标函数。
  • 核心结构:主要由12个transformer的decoder组成,并且只用了mask multi-head attention

2. GPT2

与GPT1相比做了以下改进:

  • 在attention前做了Layer Norm,使得模型输入更稳定
  • 输入序列的最大长度从 512 扩充到 1024。
  • 使用预训练+zero-shot的方式,而不是预训练+有监督微调,zero-shot通过prompt实现。

3. GPT3

与GPT2相比做了以下优化:

  • zero-shot变few-shot
  • attention变为了sparse attention

4. 知识补充

4.1 下游任务实现方式

  • fine-tuning:预训练 + 训练样本计算loss更新梯度,然后预测。会更新模型参数
  • zero-shot:预训练 + task description + prompt,直接预测。不更新模型参数
  • one-shot:预训练 + task description + example + prompt,预测。不更新模型参数
  • few-shot :又称为in-context learning,预训练 + task description + examples + prompt,预测。不更新模型参数

4.2 sparse attention

  • dense attention :token之间两两计算注意力,时间复杂度为 O ( N 2 ) {O(N^2)} O(N2)
  • sparse attention :token只与其他token的一个子集计算注意力。对于某一个token,只计算和他相对距离小于k,以及距离为2k,3k...nk的token计算,时间复杂度为 O ( N ∗ l o g ( N ) ) {O(N*log(N))} O(N∗log(N))
相关推荐
renhongxia13 小时前
大型语言模型性能预测器:学习何时在混合人机-人工智能管理系统中升级
人工智能·深度学习·学习·机器学习·语言模型·自然语言处理
摸鱼仙人~8 小时前
针对大语言模型文本审核逻辑鲁棒性与精细化规则编排的深度研究报告
人工智能·语言模型·自然语言处理
杜子不疼.8 小时前
自然语言处理(NLP)实战指南:从传统方法到深度学习
人工智能·深度学习·自然语言处理
GitCode官方8 小时前
1.8B 体积、33 种语言互译|腾讯混元 HY-MT1.5-1.8B 多语言机器翻译模型上线
人工智能·自然语言处理·机器翻译
狮子座明仔8 小时前
O-Researcher:多智能体蒸馏与强化学习打造开源深度研究新标杆
人工智能·深度学习·语言模型·自然语言处理·开源
路多辛8 小时前
为大语言模型而生的节省成本数据格式 TOON 详解
人工智能·语言模型·自然语言处理
ldccorpora8 小时前
GALE Phase 1 Distillation Training数据集介绍,官网编号LDC2007T20
人工智能·深度学习·算法·机器学习·自然语言处理·语音识别
百***07459 小时前
GPT-5.2:重构通用智能边界,迈向生产级AI新纪元
开发语言·python·gpt
大模型任我行9 小时前
腾讯:动态树强化学习框架DART
人工智能·语言模型·自然语言处理·论文笔记
nju_spy9 小时前
动手学深度学习 - NLP 词嵌入全解析:从 Word2Vec/GloVe 到 FastText/BPE 与 BERT
深度学习·自然语言处理·预训练模型·word2vec·glove·词嵌入·文本表示学习