【大模型】GPT系列模型基础

前言:GPT整体上与transformer结构相似,但只用了decoder部分。

目录

  • [1. GPT](#1. GPT)
  • [2. GPT2](#2. GPT2)
  • [3. GPT3](#3. GPT3)
  • [4. 知识补充](#4. 知识补充)
    • [4.1 下游任务实现方式](#4.1 下游任务实现方式)
    • [4.2 sparse attention](#4.2 sparse attention)

1. GPT

  • 预训练:无监督,根据前k个词预测下一个词的概率。
  • 微调: 有监督,目标函数=有监督的目标函数+λ*无监督的目标函数。
  • 核心结构:主要由12个transformer的decoder组成,并且只用了mask multi-head attention

2. GPT2

与GPT1相比做了以下改进:

  • 在attention前做了Layer Norm,使得模型输入更稳定
  • 输入序列的最大长度从 512 扩充到 1024。
  • 使用预训练+zero-shot的方式,而不是预训练+有监督微调,zero-shot通过prompt实现。

3. GPT3

与GPT2相比做了以下优化:

  • zero-shot变few-shot
  • attention变为了sparse attention

4. 知识补充

4.1 下游任务实现方式

  • fine-tuning:预训练 + 训练样本计算loss更新梯度,然后预测。会更新模型参数
  • zero-shot:预训练 + task description + prompt,直接预测。不更新模型参数
  • one-shot:预训练 + task description + example + prompt,预测。不更新模型参数
  • few-shot :又称为in-context learning,预训练 + task description + examples + prompt,预测。不更新模型参数

4.2 sparse attention

  • dense attention :token之间两两计算注意力,时间复杂度为 O ( N 2 ) {O(N^2)} O(N2)
  • sparse attention :token只与其他token的一个子集计算注意力。对于某一个token,只计算和他相对距离小于k,以及距离为2k,3k...nk的token计算,时间复杂度为 O ( N ∗ l o g ( N ) ) {O(N*log(N))} O(N∗log(N))
相关推荐
Jamence11 小时前
多模态大语言模型arxiv论文略读(151)
论文阅读·人工智能·语言模型·自然语言处理·论文笔记
sky丶Mamba12 小时前
Transformer、BERT、GPT以及Embedding之间的关系
gpt·bert·transformer
Brian Xia14 小时前
Word2Vec模型详解:CBOW与Skip-gram
人工智能·自然语言处理·word2vec
九章云极AladdinEdu1 天前
冷冻电镜重构的GPU加速破局:从Relion到CryoSPARC的并行重构算法
人工智能·pytorch·深度学习·机器学习·自然语言处理·架构·gpu算力
陈敬雷-充电了么-CEO兼CTO1 天前
主流大模型Agent框架 AutoGPT详解
人工智能·python·gpt·ai·chatgpt·nlp·aigc
MARS_AI_1 天前
云蝠智能 Voice Agent 落地展会邀约场景:重构会展行业的智能交互范式
人工智能·自然语言处理·重构·交互·语音识别·信息与通信
夏末蝉未鸣011 天前
python transformers库笔记(BertForTokenClassification类)
python·自然语言处理·transformer
ahead~2 天前
【大模型入门】访问GPT_API实战案例
人工智能·python·gpt·大语言模型llm
强哥之神2 天前
Meta AI 推出 Multi - SpatialMLLM:借助多模态大语言模型实现多帧空间理解
人工智能·深度学习·计算机视觉·语言模型·自然语言处理·llama
不会计算机的g_c__b2 天前
跨越NLP的三重曲线:从词法到叙事的进化之路
人工智能·自然语言处理