Datawhale X 李宏毅苹果书 AI夏令营-深度学习进阶task3:批量归一化

1.批量归一化

如果误差表面很崎岖,它比较难训练。批量归一化(Batch Normalization,BN)就是其中一个"把山铲平"的想法

如图 所示,假设两个参数对损失的斜率差别非常大,在 w1 这个方向上面,斜率变化很小,在 w2 这个方向上面斜率变化很大。

2.特征归一化

如果输入的特征范围相差很多,那么就可能会出现以上问题。如果我们可以给不同的维度,同样的数值范围的话,那我们可能就可以制造比较好的误差表面,让训练变得比较容易一点其实有很多不同的方法,这些不同的方法往往就合起来统称为特征归一化(feature normalization)。

以下所讲的方法只是特征归一化的一种可能性,即 Z 值归一化(Z-score normalization),也称为标准化(standardization)。假设 x1 到 xR,是我们所有的训练数据的特征向量。我们把所有训练数据的特征向量,统统都集合起来。向量 x1 里面就x11 代表 x1 的第一个元素,x21 代表 x2 的第一个元素,以此类推。我们把不同笔数据即不同特征向量,同一个维度里面的数值,把它取出来,对于每个维度 i,计算其平均值(mean) mi和标准差(standard deviation)σi。接下来我们就可以做一种归一化。

3.深度学习中的归一化

x˜ 代表归一化的特征,把它丢到深度网络里面,去做接下来的计算和训练。x˜1 通过第一层得到 z1,有可能通过激活函数,不管是选 sigmoid 或者 ReLU 都可以,再得到 a1,接着再通过下一层等等。

接下来可以通过激活函数得到其他向量,µ 跟 σ 都是根据 z1, z2, z3 计算出来的。改变了 z1 的值,a1 的值也会改变,µ 和 σ 也会改变。µ,σ 改后,z2, a2, z3, a3的值也会改变。之前的 x˜1, x˜2 x˜3 是独立分开处理的,但是在做特征归一化以后,这三个样本变得彼此关联了。所以有做特征归一化的时候,可以把整个过程当做是网络的一部分。即有一个比较大的网络,该网络吃一堆输入,用这堆输入在这个网络里面计算出 µ,σ,接下来产生一堆输出。

测试有时候又称为推断(inference)

批量归一化在测试的时候,并不需要做什么特别的处理,PyTorch 已经处理好了。在训练的时候,如果有在做批量归一化,每一个批量计算出来的 µ,σ,都会拿出来算移动平均(moving average)。假设现在有各个批量计算出来的 µ1, µ2, µ3, · · · · · · , µt,则可以计算移动平均

其中,µ¯ 是 µ 的个平均值,p 是因子,这也是一个常数,这也是一个超参数,也是需要调的那种。

4.内部协变量偏移

原始的批量归一化论文里面提出内部协变量偏移(internal covariate shift)概念。我们在计算 B 更新到 B′ 的梯度的时候,这个时候前一层的参数是 A,或者是前一层的输出是 a。那当前一层从 A 变成 A′ 的时候,其输出就从 a 变成 a′ 。但是我们计算这个梯度的时候,是根据 a 算出来,所以这个更新的方向也许它适合用在 a 上,但不适合用在 a′ 上面。因为我们每次都有做批量归一化,就会让 a 和a′ 的分布比较接近,也许这样就会对训练有帮助。

相关推荐
Niuguangshuo5 分钟前
# PyTorch 中 `nn.ModuleList` 详解
人工智能·pytorch·python
2501_942818916 分钟前
AI 多模态全栈项目实战:Vue3 + Node 打造 TTS+ASR 全家桶!
vue.js·人工智能·node.js
CICI1314141311 分钟前
藦卡机器人:让焊接更洁净、更精准、更智能
大数据·人工智能
嵌入式老牛16 分钟前
面向能源领域的AI大模型工程化落地方法
人工智能·能源
天竺鼠不该去劝架23 分钟前
金融智能体三大核心场景:银行运营、证券研究、保险理赔效率提升路径
人工智能·科技·自动化
Small___ming24 分钟前
【人工智能基础】深度学习归一化层完全指南:从入门到精通
人工智能·深度学习·归一化
短视频矩阵源码定制34 分钟前
矩阵系统源头厂家
大数据·人工智能·矩阵
老赵聊算法、大模型备案35 分钟前
《人工智能拟人化互动服务管理暂行办法(征求意见稿)》深度解读:AI“拟人”时代迎来首个专项监管框架
人工智能·算法·安全·aigc
亚马逊云开发者1 小时前
使用 Kiro AI IDE 开发 Amazon CDK 部署架构:从模糊需求到三层堆栈的协作实战
人工智能
心无旁骛~1 小时前
ModelEngine Nexent 智能体从创建到部署全流程深度体验:自动化利器让 AI 开发效率拉满!
运维·人工智能·自动化