pytorch 均方误差损失函数

均方误差损失函数主要用于回归问题。它计算预测值与真实值之间差的平方,然后取平均值。这个损失函数通过惩罚大的误差,使得模型在训练时更加注重减少较大的偏差。

复制代码
import torch
import torch.nn as nn

# 创建预测值和实际值张量
predicted = torch.tensor([0.5, 0.3, 0.2], requires_grad=True)
actual = torch.tensor([0.6, 0.1, 0.2])

# 定义 MSE 损失函数
criterion = nn.MSELoss()

# 计算损失
loss = criterion(predicted, actual)
print(loss.item())  # 输出损失值

解释:

  • predicted 是模型的预测输出,actual 是对应的真实值。
  • nn.MSELoss() 定义了均方误差损失函数。
  • loss = criterion(predicted, actual) 计算预测值和实际值之间的均方误差。
  • .item() 用于从单个元素张量中提取数值。
参考

MSELoss --- PyTorch 2.4 documentation

相关推荐
张子夜 iiii1 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉
静西子1 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8281 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo2 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习
小王爱学人工智能2 小时前
OpenCV的图像金字塔
人工智能·opencv·计算机视觉
困鲲鲲2 小时前
Flask 核心基础:从 路由装饰器 到 __name__ 变量 的底层逻辑解析
python·flask
北京地铁1号线2 小时前
Qwen-VL(阿里通义千问视觉语言模型)模型架构和损失函数介绍
人工智能·语言模型·自然语言处理
njxiejing2 小时前
Python NumPy安装、导入与入门
开发语言·python·numpy
阿豪32 小时前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理