示例图:
相机渲染出图后,图片上每个像素点中对应的纹理的像素值。获取这个对应关系存到数据库
基本思路是
从相机圆心发射射线接触到物体时获取接触点(三维坐标)所在三角面,通过这个三角面的三个顶点坐标及其三个纹理坐标,通过重心坐标求出接触点所对应的纹理坐标。在发射射线时,通过相机分辨率中某一点的二维坐标(即渲染出图后图片上的坐标)转三维坐标,结合相机圆心确认射线方向。至此【图片上每个像素点中对应的纹理的像素值】对应关系所需要的数据已具备,
示例代码
如上图,相机视野中存在一个半球模型(已贴图),一个模型船
python
import bpy
import mathutils
import sqlite3
import time
import numpy as np
from PIL import Image
# 虚拟相机名称的变量,用与获取自定义命名方式的物体。
name = 'bow'
# 导出数据库位置
dbpath = 'D:/syncdisk/blender_export/' + name + '.db'
# 渲染出图的位置
export_image_path = 'D:/syncdisk/blender_export/' + name + '.png'
# 获取当前场景中的相机对象
camera = bpy.data.objects[name + ".001"]
# 获取对象的网格数据
back_mesh = bpy.data.objects["球体.001"]
ship = bpy.data.objects["Box5885.001"]
line = bpy.data.objects["Box5885.003"]
# 链接数据库的句柄
db = sqlite3.connect(dbpath)
# cursor对象
db_cur = db.cursor()
# 获取当前渲染设置
render_settings = bpy.context.scene.render
# 获取渲染图的尺寸
render_width = render_settings.resolution_x
render_height = render_settings.resolution_y
# 获取所有材质,用于获取材质颜色
materials = bpy.data.materials
mesh = back_mesh.data
# 获取模型的世界变换矩阵
world_mat = back_mesh.matrix_world
# 获取uv层,用于遍历获取uv数据
uv_layers_data = back_mesh.data.uv_layers.active.data
# 存储要写入数据库的数据
sql_value = []
# 清空表格
def clearTable(tableName, cur):
print('开始清空表'+tableName)
sql = 'delete from ' + tableName + ' where 1 = 1'
try:
cur.execute(sql)
print('清空表' + tableName + '成功')
except Exception as e:
print(e)
print('清空表' + tableName + '失败')
def dissconnectDB(cur):
# 关闭游标
cur.close()
# 关闭连接
db.close()
print('断开数据库链接')
# 执行sql创建表
def createTable(cur):
print('开始创建表:pixelmap')
# 执行sql创建表
sql = 'create table pixelmap(id integer primary key,canvas integer not null,row0 float not null,col0 float not null,source integer not null,row1 float not null,col1 float not null,wt float not null)'
try:
cur.execute(sql)
print('创建表:pixelmap成功')
except Exception as e:
print(e)
print('创建表:pixelmap失败')
print('开始创建表:keyvalue')
sql = 'create table keyvalue(id integer primary key,key string,value string)'
try:
cur.execute(sql)
print('创建表:keyvalue成功')
except Exception as e:
print(e)
print('创建表:keyvalue失败')
def insertValueIntoTable(value, cur):
print('开始插入数据到表pixelmap')
try:
# 执行sql创建表
sql = 'insert into pixelmap(canvas,row0,col0,source,row1,col1,wt) values(?,?,?,?,?,?,?)'
cur.executemany(sql, value)
# 提交事务
db.commit()
print('插入成功')
except Exception as e:
print('插入失败')
print(e)
db.rollback()
def insertValueIntoKeyValueTable(value, cur):
print('开始插入数据到表keyvalue')
try:
# 执行sql创建表
sql = 'insert into keyvalue(key,value) values(?,?)'
cur.executemany(sql, value)
# 提交事务
db.commit()
print('插入成功')
except Exception as e:
print('插入失败')
print(e)
db.rollback()
def coord2_3d(camera, coord):
out = mathutils.Vector((
(2.0 * coord[0] / render_width) - 1.0,
(2.0 * (1.0 - coord[1] / render_height)) - 1.0,
-0.5
))
# 获取相机的投影矩阵
perspective_matrix = camera.calc_matrix_camera(
bpy.context.evaluated_depsgraph_get(),
x = render_width,
y = render_height
)
persinv = perspective_matrix.inverted()
coord_world = camera.matrix_world @ (persinv @ out)
return coord_world
def obj_ray_cast(obj, coord, camera):
view_vector = coord2_3d(camera, coord)
ray_origin = camera.matrix_world.translation
matrix_inv = obj.matrix_world.copy().inverted()
ray_origin_obj = matrix_inv @ ray_origin
ray_target_obj = matrix_inv @ view_vector
ray_direction_obj = ray_target_obj - ray_origin_obj
# cast the ray
success, location, normal, face_index = obj.ray_cast(ray_origin_obj, ray_direction_obj)
if success:
coord_world = back_mesh.matrix_world @ location
return (coord_world, face_index)
else:
return ((-1, -1), -1)
# 计算三角形的面积
def triangle_area(v1, v2, v3):
AB = v2 - v1
AC = v3 - v1
area = 0.5 * np.linalg.norm(np.cross(AB, AC))
return area
def calculate_barycenter_3d(point, points):
A = triangle_area(points[0], points[1], points[2])
A1 = triangle_area(point, points[1], points[2])
A2 = triangle_area(points[0], point, points[2])
A3 = triangle_area(points[0], points[1], point)
return (A1 / A, A2 / A, A3 / A, (A1 / A + A2 / A + A3 / A))
def calculate_point_from_barycenter(barycenter, points):
if len(barycenter) != 3 or len(points) != 3:
return None
x = barycenter[0] * points[0][0] + barycenter[1] * points[1][0] + barycenter[2] * points[2][0]
y = barycenter[0] * points[0][1] + barycenter[1] * points[1][1] + barycenter[2] * points[2][1]
return x, y
# 计算点在三角形中的重心坐标,返回的坐标在值都是大于0的,则在三角形内部
def calculate_barycenter(point, points):
if len(point) != 2:
return (-1, 1, 0)
if len(points) != 3:
return (-1, 1, 0)
x, y = point[0], point[1]
p1, p2, p3 = points[0], points[1], points[2]
denominator = (p2[1] - p3[1]) * (p1[0] - p3[0]) + (p3[0] - p2[0]) * (p1[1] - p3[1])
if denominator == 0.0:
return (-1, -1, -1)
alpha = ((p2[1] - p3[1]) * (x - p3[0]) + (p3[0] - p2[0]) * (y - p3[1])) / denominator
beta = ((p3[1] - p1[1]) * (x - p3[0]) + (p1[0] - p3[0]) * (y - p3[1])) / denominator
gamma = 1.0 - alpha - beta
return (alpha, beta, gamma)
def rgba_to_hex(rgb):
red = round(rgb[0] * 255)
green = round(rgb[1] * 255)
blue = round(rgb[2] * 255)
hex_color = (red << 16) + (green << 8) + blue
return hex(hex_color)
# 获取材质的颜色(纯色材质)
def getMaterialColor(index):
# 获取所有的材质
materials = bpy.data.materials
material = materials[index]
# 如果材质包含 Principled BSDF Shader,则获取 Base Color
if material.use_nodes:
nodes = material.node_tree.nodes
principled_bsdf = nodes.get("Principled BSDF")
if principled_bsdf is not None:
base_color = principled_bsdf.inputs["Base Color"].default_value
return rgba_to_hex((base_color[0], base_color[1], base_color[2]))
# print(f"Material Index: {index}, Base Color: {base_color[0],base_color[1],base_color[2],base_color[3]}")
# 否则,尝试获取 Diffuse Shader 的颜色
else:
diffuse_shader = material.diffuse_color
return rgba_to_hex(diffuse_shader)
def open_image(filepath):
return Image.open(filepath)
def get_pixel_color(image, x, y):
# 获取指定位置的像素颜色值
color = image.getpixel((x, y))
red = color[0]
green = color[1]
blue = color[2]
hex_color = (red << 16) + (green << 8) + blue
return hex(hex_color)
try:
createTable(db_cur)
clearTable('pixelmap',db_cur)
clearTable('keyvalue',db_cur)
# 渲染图像
print("开始渲染图片")
bpy.context.scene.render.filepath = export_image_path # 输出路径
bpy.context.scene.render.resolution_x = render_width # 分辨率X
bpy.context.scene.render.resolution_y = render_height # 分辨率Y
bpy.ops.render.render(write_still=True)
print("渲染图片结束")
time.sleep(1)
# 获取渲染图句柄
print("获取渲染图句柄")
image = open_image(export_image_path)
for y in range(render_height):
print("loading y...", y)
for x in range(render_width):
# 获取面的所有顶点对应的纹理坐标
tex_coords = []
# 获取面的所有顶点
vertices = []
coord = x, y
ship_coord, face_index_ship = obj_ray_cast(ship, coord, camera)
# line_coord, face_index_line = obj_ray_cast(line, coord, camera)
if ship_coord[0] != -1:
sql_value.append((0, y, x, -1, 0.0, 0.0, get_pixel_color(image, x, y)))
# elif line_coord[0] != -1:
# sql_value.append((0, y, x, -1, 0.0, 0.0, get_pixel_color(image, x, y)))
else:
coord_world, face_index = obj_ray_cast(back_mesh, coord, camera)
if coord_world[0] != -1:
face = mesh.polygons[face_index]
loop_start = face.loop_start
loop_end = face.loop_start + face.loop_total
if face.loop_total == 4:
# blender中是使用四角面,也就是两个三角面合并后的面计算
# 先获取到四个顶点
vertices_0 = mesh.loops[face.loop_start].vertex_index
vertices_0_w = world_mat @ mesh.vertices[vertices_0].co
tex_coords.append(uv_layers_data[face.loop_start].uv)
vertices.append(vertices_0_w)
vertices_1 = mesh.loops[face.loop_start+1].vertex_index
vertices_1_w = world_mat @ mesh.vertices[vertices_1].co
tex_coords.append(uv_layers_data[face.loop_start+1].uv)
vertices.append(vertices_1_w)
vertices_2 = mesh.loops[face.loop_start+2].vertex_index
vertices_2_w = world_mat @ mesh.vertices[vertices_2].co
tex_coords.append(uv_layers_data[face.loop_start+2].uv)
vertices.append(vertices_2_w)
# 计算重心坐标,判断该像素点是否在第一个三角面内
barycenter = calculate_barycenter_3d(coord_world, vertices)
if (barycenter[3] <= 1.000001):
coord_xy = calculate_point_from_barycenter((barycenter[0], barycenter[1], barycenter[2]), tex_coords)
sql_value.append((0, y, x, float(face.material_index), 1-coord_xy[1], coord_xy[0], 1.0))
# 第二个三角面
else:
vertices_3 = mesh.loops[face.loop_start+3].vertex_index
vertices_3_w = world_mat @ mesh.vertices[vertices_3].co
tex_coords[1] = uv_layers_data[face.loop_start+2].uv
tex_coords[2] = uv_layers_data[face.loop_start+3].uv
vertices[1] = vertices_2_w
vertices[2] = vertices_3_w
# 计算重心坐标,判断该像素点是否在第一个三角面内
barycenter = calculate_barycenter_3d(coord_world, vertices)
if (barycenter[3] <= 1.000001):
coord_xy = calculate_point_from_barycenter((barycenter[0], barycenter[1], barycenter[2]), tex_coords)
sql_value.append((0, y, x, float(face.material_index), 1-coord_xy[1], coord_xy[0], 1.0))
else:
vertices_0 = mesh.loops[face.loop_start].vertex_index
tex_coords.append(uv_layers_data[face.loop_start].uv)
vertices.append(world_mat @ mesh.vertices[vertices_0].co)
vertices_1 = mesh.loops[face.loop_start+1].vertex_index
tex_coords.append(uv_layers_data[face.loop_start+1].uv)
vertices.append(world_mat @ mesh.vertices[vertices_1].co)
vertices_2 = mesh.loops[face.loop_start+2].vertex_index
tex_coords.append(uv_layers_data[face.loop_start+2].uv)
vertices.append(world_mat @ mesh.vertices[vertices_2].co)
# 计算重心坐标,判断该像素点是否在第一个三角面内
barycenter = calculate_barycenter_3d(coord_world, vertices)
if (barycenter[3] <= 1.000001):
coord_xy = calculate_point_from_barycenter((barycenter[0], barycenter[1], barycenter[2]), tex_coords)
sql_value.append((0, y, x, float(face.material_index), 1-coord_xy[1], coord_xy[0], 1.0))
# sql_value.append((0,render_width-x,y, float(face.material_index), 1-coord_xy[1], coord_xy[0], 1.0))
insertValueIntoTable(sql_value, db_cur)
insertValueIntoKeyValueTable([("canvas_width",render_width),("canvas_height",render_height)],db_cur)
dissconnectDB(db_cur)
except Exception as e:
dissconnectDB(db_cur)