【Python】数据可视化之核密度

KDEPlot(Kernel Density Estimate Plot,核密度估计图)是seaborn库中一个用于数据可视化的函数,它基于核密度估计(KDE)这一非参数统计方法来估计数据的概率密度函数。KDEPlot能够直观地展示数据的分布特征,对于单变量和双变量数据均适用。

目录

基本思想

主要参数

沿轴绘制

平滑调整

多类绘制

堆叠分布

二元分布


基本思想

核密度估计(Kernel Density Estimation, KDE)是一种用于估计随机变量概率密度函数的非参数方法。在统计学和概率论中,当我们不知道数据背后的确切分布形式时,核密度估计提供了一种灵活的方式来估计数据的分布形态。这种方法特别适用于小样本数据和复杂分布的情况。

核密度估计的基本思想是将每一个数据点看作是一个小型的、平滑的"核"函数(通常是正态分布、均匀分布或其他形式的对称、平滑函数)的中心,然后计算这些核函数在整个数据空间上的叠加结果。这个叠加的结果就是整个数据集的密度估计。

主要参数

  • data:要绘制的数据集,可以是一维数组(单变量)或二维数组/DataFrame(双变量)。
  • shade:是否在核密度曲线下绘制阴影,默认为True。阴影可以帮助更直观地展示数据的分布范围。
  • color:曲线的颜色,默认为绿色('g')。
  • hue :语义映射以确定绘图元素颜色的语义变量。
  • linewidth:曲线的宽度,默认为1。
  • bw(bandwidth):核密度估计的带宽,控制曲线的平滑程度。默认为'scott',即使用Scott的规则自动计算带宽。
  • bw_adjust**:**平滑程度缩放的因子。增加将使曲线更平滑。
  • gridsize:用于计算核密度的网格大小,默认为100。增加此值可以提高图形的分辨率,但也会增加计算时间。
  • cumulative:是否绘制累积密度函数(CDF),默认为False。如果设置为True,则绘制的是数据的累积分布函数而非概率密度函数。
  • vertical:在单变量输入时有效,用于控制是否颠倒x-y轴位置,默认为False。
  • kernel:核密度估计的方法,默认为'gau'(高斯核)。特别地,在二维变量的情况下仅支持高斯核方法。
  • cmap:在绘制二维KDE图时使用的颜色映射(colormap),用于控制核密度区域的递进色彩方案。

沿轴绘制

沿x轴绘制单变量分布

tips = sns.load_dataset("tips")
sns.kdeplot(data=tips, x="total_bill", shade=True, color="g")

沿y轴绘制单变量分布

sns.kdeplot(data=tips, y="total_bill", shade=True, color="g")

平滑调整

使用更少的平滑

sns.kdeplot(data=tips, x="total_bill", bw_adjust=.1, shade=True, color="b")

使用更多的平滑(不绕过极端值)

ax= sns.kdeplot(data=tips, x="total_bill", bw_adjust=5, cut=0, shade=True, color="b")

多类绘制

绘制多类或多列数据

iris = sns.load_dataset("iris")
sns.kdeplot(data=iris, shade=True)

使用不同的调色

iris = sns.load_dataset("iris")
sns.kdeplot(data=iris, shade=True, palette="crest")

堆叠分布

堆叠条件分布multiple="stack"

sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="stack", palette="PRGn")

按照填充堆叠multiple="fill"

sns.kdeplot(data=tips, x="total_bill", hue="time", multiple="fill",palette="PRGn")

二元分布

绘制x,y的二元分布图

sns.kdeplot(data=geyser, x="waiting", y="duration")

使用 hue 语义映射以显示条件分布

geyser = sns.load_dataset("geyser")
sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind")

填空含语义映射的条件分布曲线

geyser = sns.load_dataset("geyser")
sns.kdeplot(data=geyser, x="waiting", y="duration", hue="kind", shade=True, shade_lowest=False, cmap="crest")
相关推荐
Elastic 中国社区官方博客5 分钟前
设计新的 Kibana 仪表板布局以支持可折叠部分等
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
阿俊仔(摸鱼版)5 分钟前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead7 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
深蓝海拓28 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
无须logic ᭄35 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
Channing Lewis1 小时前
flask常见问答题
后端·python·flask
Channing Lewis1 小时前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月2 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉
你熬夜了吗?2 小时前
日历热力图,月度数据可视化图表(日活跃图、格子图)vue组件
前端·vue.js·信息可视化
Evand J2 小时前
matlab绘图——彩色螺旋图
开发语言·matlab·信息可视化