PyTorch维度操作的函数介绍

在 PyTorch 中,操作张量的维度是常见的需求,特别是在处理多维数据时。PyTorch 提供了一系列函数来操作张量的维度,包括改变维度顺序、添加或删除维度、扩展维度等。下面是一些常用的维度操作函数及其示例代码。

1. view()

  • 作用 :重新调整张量的形状(维度),但不改变其数据内容。view() 是基于张量的原始内存布局进行操作的,要求重新调整的形状能与原始数据兼容。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    调整为形状为 [6, 4] 的张量

    reshaped = tensor.view(6, 4)
    print(reshaped.shape) # 输出: torch.Size([6, 4])

2. permute()

  • 作用:重新排列张量的维度顺序。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    交换第一个维度和第二个维度,得到形状为 [3, 2, 4] 的张量

    permuted = tensor.permute(1, 0, 2)
    print(permuted.shape) # 输出: torch.Size([3, 2, 4])

3. unsqueeze()

  • 作用:在指定位置插入一个大小为 1 的新维度。

  • 示例

    import torch

    创建一个形状为 [3, 4] 的张量

    tensor = torch.randn(3, 4)

    在第 0 维添加一个新维度,结果形状为 [1, 3, 4]

    unsqueezed = tensor.unsqueeze(0)
    print(unsqueezed.shape) # 输出: torch.Size([1, 3, 4])

4. squeeze()

  • 作用:移除张量中所有大小为 1 的维度。

  • 示例

    import torch

    创建一个形状为 [1, 3, 1, 4] 的张量

    tensor = torch.randn(1, 3, 1, 4)

    移除所有大小为 1 的维度,结果形状为 [3, 4]

    squeezed = tensor.squeeze()
    print(squeezed.shape) # 输出: torch.Size([3, 4])

5. transpose()

  • 作用:交换张量的两个指定维度。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    交换第 1 维和第 2 维,结果形状为 [2, 4, 3]

    transposed = tensor.transpose(1, 2)
    print(transposed.shape) # 输出: torch.Size([2, 4, 3])

6. expand()

  • 作用:将张量的某些维度扩展为更大的尺寸,不会复制数据,而是通过广播机制扩展。

  • 示例

    import torch

    创建一个形状为 [2, 1, 4] 的张量

    tensor = torch.randn(2, 1, 4)

    扩展第 1 维到大小为 3,结果形状为 [2, 3, 4]

    expanded = tensor.expand(2, 3, 4)
    print(expanded.shape) # 输出: torch.Size([2, 3, 4])

7. repeat()

  • 作用:沿着指定的维度重复张量的元素。

  • 示例

    import torch

    创建一个形状为 [2, 3] 的张量

    tensor = torch.randn(2, 3)

    沿着第 0 维和第 1 维分别重复 2 次和 3 次,结果形状为 [4, 9]

    repeated = tensor.repeat(2, 3)
    print(repeated.shape) # 输出: torch.Size([4, 9])

8. cat()

  • 作用:在指定维度上连接多个张量。

  • 示例

    import torch

    创建两个形状为 [2, 3] 的张量

    tensor1 = torch.randn(2, 3)
    tensor2 = torch.randn(2, 3)

    在第 0 维连接,结果形状为 [4, 3]

    concatenated = torch.cat([tensor1, tensor2], dim=0)
    print(concatenated.shape) # 输出: torch.Size([4, 3])

9. stack()

  • 作用:在新的维度上堆叠多个张量。

  • 示例

    import torch

    创建两个形状为 [2, 3] 的张量

    tensor1 = torch.randn(2, 3)
    tensor2 = torch.randn(2, 3)

    在新的第 0 维堆叠,结果形状为 [2, 2, 3]

    stacked = torch.stack([tensor1, tensor2], dim=0)
    print(stacked.shape) # 输出: torch.Size([2, 2, 3])

总结

PyTorch 提供了丰富的维度操作函数,使得张量的操作非常灵活。在处理多维数据时,合理使用这些函数可以极大地简化代码,并提高数据处理的效率。

相关推荐
qyresearch_几秒前
全球机械工业设计服务市场:技术驱动下的创新与增长
大数据·人工智能
木头左几秒前
决策树与随机森林Python实践
python·随机森林
LLM大模型4 分钟前
DeepSeek篇-Deepseek-R1+Dify打造本地RAG知识库
人工智能·llm·deepseek
北京地铁1号线4 分钟前
Zero-Shot(零样本学习),One-Shot(单样本学习),Few-Shot(少样本学习)概述
人工智能·算法·大模型
杀生丸学AI9 分钟前
【三维生成】FlashDreamer:基于扩散模型的单目图像到3D场景
人工智能·3d·大模型·aigc·蒸馏与迁移学习·扩散模型与生成模型
柠檬味拥抱10 分钟前
金属材料表面六种缺陷类型数据集 | 适用于YOLO等视觉检测模型(1800张图片已划分、已标注)
人工智能
网小鱼的学习笔记14 分钟前
python中MongoDB操作实践:查询文档、批量插入文档、更新文档、删除文档
开发语言·python·mongodb
Baihai_IDP23 分钟前
AI 系统架构的演进:LLM → RAG → AI Workflow → AI Agent
人工智能·llm·aigc
Q_Q51100828524 分钟前
python的保险业务管理与数据分析系统
开发语言·spring boot·python·django·flask·node.js·php
12点一刻25 分钟前
搭建自动化工作流:探寻解放双手的有效方案(1)
运维·人工智能·自动化·deepseek