PyTorch维度操作的函数介绍

在 PyTorch 中,操作张量的维度是常见的需求,特别是在处理多维数据时。PyTorch 提供了一系列函数来操作张量的维度,包括改变维度顺序、添加或删除维度、扩展维度等。下面是一些常用的维度操作函数及其示例代码。

1. view()

  • 作用 :重新调整张量的形状(维度),但不改变其数据内容。view() 是基于张量的原始内存布局进行操作的,要求重新调整的形状能与原始数据兼容。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    调整为形状为 [6, 4] 的张量

    reshaped = tensor.view(6, 4)
    print(reshaped.shape) # 输出: torch.Size([6, 4])

2. permute()

  • 作用:重新排列张量的维度顺序。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    交换第一个维度和第二个维度,得到形状为 [3, 2, 4] 的张量

    permuted = tensor.permute(1, 0, 2)
    print(permuted.shape) # 输出: torch.Size([3, 2, 4])

3. unsqueeze()

  • 作用:在指定位置插入一个大小为 1 的新维度。

  • 示例

    import torch

    创建一个形状为 [3, 4] 的张量

    tensor = torch.randn(3, 4)

    在第 0 维添加一个新维度,结果形状为 [1, 3, 4]

    unsqueezed = tensor.unsqueeze(0)
    print(unsqueezed.shape) # 输出: torch.Size([1, 3, 4])

4. squeeze()

  • 作用:移除张量中所有大小为 1 的维度。

  • 示例

    import torch

    创建一个形状为 [1, 3, 1, 4] 的张量

    tensor = torch.randn(1, 3, 1, 4)

    移除所有大小为 1 的维度,结果形状为 [3, 4]

    squeezed = tensor.squeeze()
    print(squeezed.shape) # 输出: torch.Size([3, 4])

5. transpose()

  • 作用:交换张量的两个指定维度。

  • 示例

    import torch

    创建一个形状为 [2, 3, 4] 的张量

    tensor = torch.randn(2, 3, 4)

    交换第 1 维和第 2 维,结果形状为 [2, 4, 3]

    transposed = tensor.transpose(1, 2)
    print(transposed.shape) # 输出: torch.Size([2, 4, 3])

6. expand()

  • 作用:将张量的某些维度扩展为更大的尺寸,不会复制数据,而是通过广播机制扩展。

  • 示例

    import torch

    创建一个形状为 [2, 1, 4] 的张量

    tensor = torch.randn(2, 1, 4)

    扩展第 1 维到大小为 3,结果形状为 [2, 3, 4]

    expanded = tensor.expand(2, 3, 4)
    print(expanded.shape) # 输出: torch.Size([2, 3, 4])

7. repeat()

  • 作用:沿着指定的维度重复张量的元素。

  • 示例

    import torch

    创建一个形状为 [2, 3] 的张量

    tensor = torch.randn(2, 3)

    沿着第 0 维和第 1 维分别重复 2 次和 3 次,结果形状为 [4, 9]

    repeated = tensor.repeat(2, 3)
    print(repeated.shape) # 输出: torch.Size([4, 9])

8. cat()

  • 作用:在指定维度上连接多个张量。

  • 示例

    import torch

    创建两个形状为 [2, 3] 的张量

    tensor1 = torch.randn(2, 3)
    tensor2 = torch.randn(2, 3)

    在第 0 维连接,结果形状为 [4, 3]

    concatenated = torch.cat([tensor1, tensor2], dim=0)
    print(concatenated.shape) # 输出: torch.Size([4, 3])

9. stack()

  • 作用:在新的维度上堆叠多个张量。

  • 示例

    import torch

    创建两个形状为 [2, 3] 的张量

    tensor1 = torch.randn(2, 3)
    tensor2 = torch.randn(2, 3)

    在新的第 0 维堆叠,结果形状为 [2, 2, 3]

    stacked = torch.stack([tensor1, tensor2], dim=0)
    print(stacked.shape) # 输出: torch.Size([2, 2, 3])

总结

PyTorch 提供了丰富的维度操作函数,使得张量的操作非常灵活。在处理多维数据时,合理使用这些函数可以极大地简化代码,并提高数据处理的效率。

相关推荐
幂简集成21 分钟前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃29 分钟前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)32 分钟前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao32 分钟前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
学生信的大叔44 分钟前
【Python自动化】Ubuntu24.04配置Selenium并测试
python·selenium·自动化
limengshi1383921 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI1 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿2 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV2 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer
飞哥数智坊2 小时前
Qoder vs CodeBuddy,刚起步就收费,值吗?
人工智能·ai编程