数据仓库理论知识

1、数据仓库的概念

数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持;

2、数据仓库的主要特征

数据仓库是面向主题性 (Subject-Oriented )、集成性 (Integrated)、非易失性 (Non-Volatile)和时变性(Time-Variant )数据集合,用以支持管理决策 。

3、数据库和数据仓库的区别:

  • 数据源:数据库的数据仅包含当前运行的日常业务数据,而数据仓库的数据是整合了多个外部系统的数据包括OLTP。
  • 目的:数据库的建设目的面向应用、面向业务、支持事务,而数据据仓库的建设是面向主题、面向分析、支持决策的
  • 焦点:数据库关注的数据焦点是当下,而数据仓库则是面向过去、面向历史、实时数仓。
  • 任务:数据库存在读写操作,而数据仓库是大量的读数据而很少有写操作。
  • 响应时间:数据库是毫秒级别,数据仓库库秒、分钟、小时或则天,主要取决于数据量和查询的复杂度。
  • 数据量:数据库小数据,MB、GB级别的,而数据仓库则是大数据TB、PB级别
  1. 数据仓库不是大型的数据库,虽然数据仓库存储数据规模大。
  2. 数据仓库的出现,并不是要取代数据库。
  3. 数据库是面向事务的设计,数据仓库是面向主题设计的。
  4. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  5. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

4、数据仓库、数据集市

数据仓库是面对整个集团和组织的数据,而数据集是面向单个部门使用的,可以认为数据集市是数据仓库的子集。用户可以基于主题数据开展各种应用:数据分析、数据报表、数据挖掘。

5、数据仓库分层架构

详解-ODS-DWD-DWS-ADS

相关推荐
武子康35 分钟前
大数据-128 - Flink 并行度详解:从概念到最佳实践,一文读懂任务并行执行机制 代码示例与性能优化
大数据·后端·flink
望获linux2 小时前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
励志成为糕手3 小时前
宽依赖的代价:Spark 与 MapReduce Shuffle 的数据重分布对比
大数据·spark·mapreduce·分布式计算·sortshuffle
Elastic 中国社区官方博客7 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
点控云8 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
风清再凯10 小时前
04_es原理&filebeat使用
大数据·elasticsearch·搜索引擎
小小王app小程序开发10 小时前
盲盒小程序开发新视角:从用户体验到运营落地的分析拆解
大数据·ux
weixin_5259363312 小时前
部分Spark SQL编程要点
大数据·python·sql·spark
wan5555cn13 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
板凳坐着晒太阳15 小时前
Flink 作业通用优化方案
大数据·flink