数据仓库理论知识

1、数据仓库的概念

数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持;

2、数据仓库的主要特征

数据仓库是面向主题性 (Subject-Oriented )、集成性 (Integrated)、非易失性 (Non-Volatile)和时变性(Time-Variant )数据集合,用以支持管理决策 。

3、数据库和数据仓库的区别:

  • 数据源:数据库的数据仅包含当前运行的日常业务数据,而数据仓库的数据是整合了多个外部系统的数据包括OLTP。
  • 目的:数据库的建设目的面向应用、面向业务、支持事务,而数据据仓库的建设是面向主题、面向分析、支持决策的
  • 焦点:数据库关注的数据焦点是当下,而数据仓库则是面向过去、面向历史、实时数仓。
  • 任务:数据库存在读写操作,而数据仓库是大量的读数据而很少有写操作。
  • 响应时间:数据库是毫秒级别,数据仓库库秒、分钟、小时或则天,主要取决于数据量和查询的复杂度。
  • 数据量:数据库小数据,MB、GB级别的,而数据仓库则是大数据TB、PB级别
  1. 数据仓库不是大型的数据库,虽然数据仓库存储数据规模大。
  2. 数据仓库的出现,并不是要取代数据库。
  3. 数据库是面向事务的设计,数据仓库是面向主题设计的。
  4. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  5. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

4、数据仓库、数据集市

数据仓库是面对整个集团和组织的数据,而数据集是面向单个部门使用的,可以认为数据集市是数据仓库的子集。用户可以基于主题数据开展各种应用:数据分析、数据报表、数据挖掘。

5、数据仓库分层架构

详解-ODS-DWD-DWS-ADS

相关推荐
递归尽头是星辰11 分钟前
Spark核心技术解析:从RDD到Dataset的演进与实践
大数据·rdd·dataset·spark核心·spark编程模型
白日与明月20 分钟前
对Hive表进行归档,减少小文件的影响
数据仓库·hive·hadoop
嘉禾望岗50335 分钟前
hive窗口函数与自定义函数
数据仓库·hive·hadoop
67X2 小时前
数据仓库与数据挖掘课程设计
数据仓库·数据挖掘
风跟我说过她2 小时前
Hadoop HA (高可用) 配置与操作指南
大数据·hadoop·分布式·zookeeper·centos
沧澜sincerely2 小时前
WSL2搭建Hadoop伪分布式环境
大数据·hadoop·搜索引擎
计算机编程小央姐9 小时前
【Spark+Hive+hadoop】基于spark+hadoop基于大数据的人口普查收入数据分析与可视化系统
大数据·hadoop·数据挖掘·数据分析·spark·课程设计
鲲志说9 小时前
数据洪流时代,如何挑选一款面向未来的时序数据库?IoTDB 的答案
大数据·数据库·apache·时序数据库·iotdb
没有bug.的程序员9 小时前
MVCC(多版本并发控制):InnoDB 高并发的核心技术
java·大数据·数据库·mysql·mvcc
nju_spy12 小时前
南京大学 - 复杂结构数据挖掘(一)
大数据·人工智能·机器学习·数据挖掘·数据清洗·南京大学·相似性分析