数据仓库理论知识

1、数据仓库的概念

数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持;

2、数据仓库的主要特征

数据仓库是面向主题性 (Subject-Oriented )、集成性 (Integrated)、非易失性 (Non-Volatile)和时变性(Time-Variant )数据集合,用以支持管理决策 。

3、数据库和数据仓库的区别:

  • 数据源:数据库的数据仅包含当前运行的日常业务数据,而数据仓库的数据是整合了多个外部系统的数据包括OLTP。
  • 目的:数据库的建设目的面向应用、面向业务、支持事务,而数据据仓库的建设是面向主题、面向分析、支持决策的
  • 焦点:数据库关注的数据焦点是当下,而数据仓库则是面向过去、面向历史、实时数仓。
  • 任务:数据库存在读写操作,而数据仓库是大量的读数据而很少有写操作。
  • 响应时间:数据库是毫秒级别,数据仓库库秒、分钟、小时或则天,主要取决于数据量和查询的复杂度。
  • 数据量:数据库小数据,MB、GB级别的,而数据仓库则是大数据TB、PB级别
  1. 数据仓库不是大型的数据库,虽然数据仓库存储数据规模大。
  2. 数据仓库的出现,并不是要取代数据库。
  3. 数据库是面向事务的设计,数据仓库是面向主题设计的。
  4. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  5. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

4、数据仓库、数据集市

数据仓库是面对整个集团和组织的数据,而数据集是面向单个部门使用的,可以认为数据集市是数据仓库的子集。用户可以基于主题数据开展各种应用:数据分析、数据报表、数据挖掘。

5、数据仓库分层架构

详解-ODS-DWD-DWS-ADS

相关推荐
AI智能探索者1 天前
揭秘大数据领域特征工程的核心要点
大数据·ai
做cv的小昊1 天前
【TJU】信息检索与分析课程笔记和练习(8)(9)发现系统和全文获取、专利与知识产权基本知识
大数据·笔记·学习·全文检索·信息检索
AC赳赳老秦1 天前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek
C7211BA1 天前
通义灵码和Qoder的差异
大数据·人工智能
三不原则1 天前
银行 AIOps 实践拆解:金融级故障自愈体系如何搭建
大数据·运维
大厂技术总监下海1 天前
数据湖加速、实时数仓、统一查询层:Apache Doris 如何成为现代数据架构的“高性能中枢”?
大数据·数据库·算法·apache
新诺韦尔API1 天前
手机三要素验证不通过的原因?
大数据·智能手机·api
成长之路5141 天前
【数据集】分地市全社会用电量统计数据(2004-2022年)
大数据
InfiSight智睿视界1 天前
门店智能体技术如何破解美容美发连锁的“标准执行困境”
大数据·运维·人工智能
Python_Study20251 天前
制造业数据采集系统选型指南:从技术挑战到架构实践
大数据·网络·数据结构·人工智能·架构