数据仓库理论知识

1、数据仓库的概念

数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持;

2、数据仓库的主要特征

数据仓库是面向主题性 (Subject-Oriented )、集成性 (Integrated)、非易失性 (Non-Volatile)和时变性(Time-Variant )数据集合,用以支持管理决策 。

3、数据库和数据仓库的区别:

  • 数据源:数据库的数据仅包含当前运行的日常业务数据,而数据仓库的数据是整合了多个外部系统的数据包括OLTP。
  • 目的:数据库的建设目的面向应用、面向业务、支持事务,而数据据仓库的建设是面向主题、面向分析、支持决策的
  • 焦点:数据库关注的数据焦点是当下,而数据仓库则是面向过去、面向历史、实时数仓。
  • 任务:数据库存在读写操作,而数据仓库是大量的读数据而很少有写操作。
  • 响应时间:数据库是毫秒级别,数据仓库库秒、分钟、小时或则天,主要取决于数据量和查询的复杂度。
  • 数据量:数据库小数据,MB、GB级别的,而数据仓库则是大数据TB、PB级别
  1. 数据仓库不是大型的数据库,虽然数据仓库存储数据规模大。
  2. 数据仓库的出现,并不是要取代数据库。
  3. 数据库是面向事务的设计,数据仓库是面向主题设计的。
  4. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  5. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

4、数据仓库、数据集市

数据仓库是面对整个集团和组织的数据,而数据集是面向单个部门使用的,可以认为数据集市是数据仓库的子集。用户可以基于主题数据开展各种应用:数据分析、数据报表、数据挖掘。

5、数据仓库分层架构

详解-ODS-DWD-DWS-ADS

相关推荐
Hsu_kk9 分钟前
Kafka 安装教程
大数据·分布式·kafka
pblh12329 分钟前
2023_Spark_实验十五:SparkSQL进阶操作
大数据·分布式·spark
给我整点护发素31 分钟前
Flink执行sql时报错
大数据·sql·flink
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ43 分钟前
Elasticsearch的查询语法——DSL 查询
大数据·elasticsearch·jenkins
Make_magic1 小时前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
小周不摆烂1 小时前
丹摩征文活动 | 丹摩智算平台:服务器虚拟化的璀璨明珠与实战秘籍
大数据·服务器
数据智研2 小时前
【数据分享】空间天气公报(2004-2021)(又名太阳数据活动公报) PDF
大数据·pdf
Elastic 中国社区官方博客2 小时前
使用真实 Elasticsearch 进行更快的集成测试
大数据·运维·服务器·数据库·elasticsearch·搜索引擎·集成测试
PcVue China6 小时前
PcVue + SQL Grid : 释放数据的无限潜力
大数据·服务器·数据库·sql·科技·安全·oracle
Mephisto.java7 小时前
【大数据学习 | HBASE】hbase的读数据流程与hbase读取数据
大数据·学习·hbase