数据仓库理论知识

1、数据仓库的概念

数据仓库(英文:Date Warehouse,简称数仓、DW),是一个用于数据存储、分析、报告的数据系统。数据仓库的建设目的是面向分析的集成化数据环境,其数据来源于不同的外部系统,其结果开放给不同外部应用使用,为企业提供决策支持;

2、数据仓库的主要特征

数据仓库是面向主题性 (Subject-Oriented )、集成性 (Integrated)、非易失性 (Non-Volatile)和时变性(Time-Variant )数据集合,用以支持管理决策 。

3、数据库和数据仓库的区别:

  • 数据源:数据库的数据仅包含当前运行的日常业务数据,而数据仓库的数据是整合了多个外部系统的数据包括OLTP。
  • 目的:数据库的建设目的面向应用、面向业务、支持事务,而数据据仓库的建设是面向主题、面向分析、支持决策的
  • 焦点:数据库关注的数据焦点是当下,而数据仓库则是面向过去、面向历史、实时数仓。
  • 任务:数据库存在读写操作,而数据仓库是大量的读数据而很少有写操作。
  • 响应时间:数据库是毫秒级别,数据仓库库秒、分钟、小时或则天,主要取决于数据量和查询的复杂度。
  • 数据量:数据库小数据,MB、GB级别的,而数据仓库则是大数据TB、PB级别
  1. 数据仓库不是大型的数据库,虽然数据仓库存储数据规模大。
  2. 数据仓库的出现,并不是要取代数据库。
  3. 数据库是面向事务的设计,数据仓库是面向主题设计的。
  4. 数据库一般存储业务数据,数据仓库存储的一般是历史数据。
  5. 数据库是为捕获数据而设计,数据仓库是为分析数据而设计

4、数据仓库、数据集市

数据仓库是面对整个集团和组织的数据,而数据集是面向单个部门使用的,可以认为数据集市是数据仓库的子集。用户可以基于主题数据开展各种应用:数据分析、数据报表、数据挖掘。

5、数据仓库分层架构

详解-ODS-DWD-DWS-ADS

相关推荐
苏小夕夕5 分钟前
spark-streaming(二)
大数据·spark·kafka
珈和info8 分钟前
珈和科技助力“农险提效200%”!“遥感+”技术创新融合省级示范项目荣登《湖北卫视》!
大数据·科技·无人机·智慧农业
盈达科技12 分钟前
盈达科技:登顶GEO优化全球制高点,以AICC定义AI时代内容智能优化新标杆
大数据·人工智能
冰^2 小时前
MySQL VS SQL Server:优缺点全解析
数据库·数据仓库·redis·sql·mysql·json·数据库开发
电商数据girl2 小时前
产品经理对于电商接口的梳理||电商接口文档梳理与接入
大数据·数据库·python·自动化·产品经理
敖云岚2 小时前
【AI】SpringAI 第五弹:接入千帆大模型
java·大数据·人工智能·spring boot·后端
宅小海2 小时前
spark和Hadoop的区别和联系
大数据·hadoop·spark
root666/2 小时前
【大数据技术-联邦集群RBF】DFSRouter日志一直打印修改Membership为EXPIRED状态的日志分析
java·大数据·hadoop
24k小善3 小时前
FlinkUDF用户自定义函数深度剖析
java·大数据·spring·flink·云计算
IT成长日记3 小时前
【Hive入门】Hive数据模型与存储格式深度解析:从理论到实践的最佳选择
数据仓库·hive·hadoop·数据模型·存储格式