flume 使用 exec 采集容器日志,转储磁盘

flume 使用 exec 采集容器日志,转储磁盘

在该场景下,docker 服务为superset,flume 的sources 选择 exec , sinks选择 file roll 。

任务配置

具体配置文件如下:

复制代码
#simple.conf: A single-node Flume configuration

# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# Describe/configure the source
a1.sources.r1.type = exec
# exec source 监控命令是tail -f ,日志文件可随意指定,这里选择的是容器服务的日志文件
a1.sources.r1.command = tail -F /data/docker/containers/e511e3e4b3445efeb38fe822ac086dfc5ebb8bdc4a725dc6e2969ef2092c78ec/e511e3e4b3445efeb38fe822ac086dfc5ebb8bdc4a725dc6e2969ef2092c78ec-json.log

# Describe the sink
a1.sinks.k1.type = file_roll
#指定文件转存储目录,可自建
a1.sinks.k1.sink.directory = /home/test/log
# one day roll once 一天滚动一次,为了防止转储日志文件过大,按天进行文件滚动
a1.sinks.k1.sink.rollInterval = 86400
#a1.sinks.k1.sink.pathManager = superset
# 定义日志文件后缀
a1.sinks.k1.sink.pathManager.extension = log
# 定义日志文件前缀
a1.sinks.k1.sink.pathManager.prefix = superset-


# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

其中,关键配置已注释,其中file_roll sinks 中 type、sink.directory是必配,其他都是选配,可参考官网文档

https://flume.apache.org/releases/content/1.8.0/FlumeUserGuide.html

配置文件中exec source监测的日志文件,可以使用如下命令获取(前提是docker环境已部署,且有应用在运行)

复制代码
docker inspect --format='{{.LogPath}}' <容器id>

任务执行

复制代码
bin/flume-ng agent -c conf -f ./job/exec-memory-logger.conf -n a1

//使用nohup &后台运行,不占用终端,但会生成nohup.out日志文件
nohup  bin/flume-ng agent -c conf -f ./job/exec-memory-logger.conf -n a1 &

到转储目录下查看,

superset- 是配置前缀,log是配置后缀,中间是时间戳(框架默认创建时间)

之所以有多个,是因为多次启停了flume agent任务。

实时性观察

tail -f 容器服务日志文件

同时tail -f 转储后的日志文件

发现两边有一个大概10S内的时差,容器服务日志产生后,大概5-6s才会在转储文件tail -f 到

经验总结

1 该方式转储日志文件基本能保证实时,时差大概5-6s(本机测试,未考虑网络时延,仅供参考)

2 flume 停止后在启动,会生成新的转储文件

3 exec source 不支持断点续传,停止后再启动,停止时间段数据不会处理

相关推荐
TracyCoder1232 小时前
ElasticSearch内存管理与操作系统(一):内存分配底层原理
大数据·elasticsearch·搜索引擎
cd_949217213 小时前
九昆仑低碳科技:所罗门群岛全国森林碳汇项目开发合作白皮书
大数据·人工智能·科技
Acrelhuang3 小时前
工商业用电成本高?安科瑞液冷储能一体机一站式解供能难题-安科瑞黄安南
大数据·开发语言·人工智能·物联网·安全
小王毕业啦3 小时前
2010-2024年 非常规高技能劳动力(+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
言無咎3 小时前
从规则引擎到任务规划:AI Agent 重构跨境财税复杂账务处理体系
大数据·人工智能·python·重构
私域合规研究4 小时前
【AI应用】AI与大数据融合:中国品牌出海获客的下一代核心引擎
大数据·海外获客
TDengine (老段)4 小时前
金融风控系统中的实时数据库技术实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
MMME~5 小时前
Ansible模块速查指南:高效定位与实战技巧
大数据·运维·数据库
计算机毕业编程指导师5 小时前
大数据可视化毕设:Hadoop+Spark交通分析系统从零到上线 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·城市交通
计算机毕业编程指导师5 小时前
【计算机毕设选题】基于Spark的车辆排放分析:2026年热门大数据项目 毕业设计 选题推荐 毕设选题 数据分析 机器学习 数据挖掘
大数据·hadoop·python·计算机·spark·毕业设计·车辆排放