- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
SGAN概述
- 简单来说,SGAN与普通GAN不同的点在于判别器
- 普通的GAN的判别器只输出"真或假"
- 而SGAN在输出真假的同时还充当分类器,将真分为真1、真2...
代码解析
配置代码
python
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=50, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
parser.add_argument("--num_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
初始化权重
python
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
定义模型
生成器
python
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim)
self.init_size = opt.img_size // 4 # Initial size before upsampling
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise):
out = self.l1(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
判别器
python
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""Returns layers of each discriminator block"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
# Output layers
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax())
def forward(self, img):
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
label = self.aux_layer(out)
return validity, label
配置模型
python
# Loss functions
adversarial_loss = torch.nn.BCELoss()
auxiliary_loss = torch.nn.CrossEntropyLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
auxiliary_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
训练模型
python
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
fake_aux_gt = Variable(LongTensor(batch_size).fill_(opt.num_classes), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = Variable(labels.type(LongTensor))
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
# Generate a batch of images
gen_imgs = generator(z)
# Loss measures generator's ability to fool the discriminator
validity, _ = discriminator(gen_imgs)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Loss for real images
real_pred, real_aux = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
# Loss for fake images
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
# Calculate discriminator accuracy
pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
gt = np.concatenate([labels.data.cpu().numpy(), fake_aux_gt.data.cpu().numpy()], axis=0)
d_acc = np.mean(np.argmax(pred, axis=1) == gt)
d_loss.backward()
optimizer_D.step()
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
)
运行过程
python
PS F:\365data\G7> & E:/anaconda3/envs/PGPU/python.exe f:/365data/G7/sgan.py
Namespace(n_epochs=50, batch_size=64, lr=0.0002, b1=0.5, b2=0.999, n_cpu=8, latent_dim=100, num_classes=10, img_size=32, channels=1, sample_interval=400)
E:\anaconda3\envs\PGPU\lib\site-packages\torch\nn\modules\container.py:139: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
input = module(input)
[Epoch 0/50] [Batch 937/938] [D loss: 1.359867, acc: 50%] [G loss: 0.656197]
[Epoch 1/50] [Batch 937/938] [D loss: 1.358995, acc: 50%] [G loss: 0.720781]
[Epoch 2/50] [Batch 937/938] [D loss: 1.344833, acc: 48%] [G loss: 0.804772]
[Epoch 3/50] [Batch 937/938] [D loss: 1.333392, acc: 54%] [G loss: 0.688524]
[Epoch 4/50] [Batch 937/938] [D loss: 1.382262, acc: 50%] [G loss: 0.701481]
[Epoch 5/50] [Batch 937/938] [D loss: 1.269132, acc: 62%] [G loss: 0.913967]
[Epoch 6/50] [Batch 937/938] [D loss: 1.314945, acc: 50%] [G loss: 0.828390]
[Epoch 7/50] [Batch 937/938] [D loss: 1.410788, acc: 50%] [G loss: 0.852402]
[Epoch 8/50] [Batch 937/938] [D loss: 1.447273, acc: 46%] [G loss: 1.019709]
[Epoch 9/50] [Batch 937/938] [D loss: 1.314910, acc: 54%] [G loss: 0.726437]
[Epoch 10/50] [Batch 937/938] [D loss: 1.404197, acc: 48%] [G loss: 0.811808]
[Epoch 11/50] [Batch 937/938] [D loss: 1.260281, acc: 59%] [G loss: 0.698684]
[Epoch 12/50] [Batch 937/938] [D loss: 1.423180, acc: 51%] [G loss: 0.661626]
[Epoch 13/50] [Batch 937/938] [D loss: 1.276824, acc: 50%] [G loss: 1.359684]
[Epoch 14/50] [Batch 937/938] [D loss: 1.351237, acc: 54%] [G loss: 0.595949]
[Epoch 15/50] [Batch 937/938] [D loss: 1.398958, acc: 53%] [G loss: 0.947947]
[Epoch 16/50] [Batch 937/938] [D loss: 1.282681, acc: 50%] [G loss: 1.282415]
[Epoch 17/50] [Batch 937/938] [D loss: 1.248466, acc: 56%] [G loss: 0.875078]
[Epoch 18/50] [Batch 937/938] [D loss: 1.220254, acc: 54%] [G loss: 0.849395]
[Epoch 19/50] [Batch 937/938] [D loss: 1.298958, acc: 51%] [G loss: 1.156524]
[Epoch 20/50] [Batch 937/938] [D loss: 1.243778, acc: 57%] [G loss: 0.959405]
[Epoch 21/50] [Batch 937/938] [D loss: 1.497701, acc: 50%] [G loss: 1.469938]
[Epoch 22/50] [Batch 937/938] [D loss: 1.303683, acc: 51%] [G loss: 1.698360]
[Epoch 23/50] [Batch 937/938] [D loss: 1.312811, acc: 48%] [G loss: 0.858052]
[Epoch 24/50] [Batch 937/938] [D loss: 1.176002, acc: 56%] [G loss: 1.668655]
[Epoch 25/50] [Batch 937/938] [D loss: 1.246156, acc: 62%] [G loss: 0.799746]
[Epoch 26/50] [Batch 937/938] [D loss: 1.317814, acc: 56%] [G loss: 2.129106]
[Epoch 27/50] [Batch 937/938] [D loss: 1.405645, acc: 45%] [G loss: 0.796651]
[Epoch 28/50] [Batch 937/938] [D loss: 1.295846, acc: 56%] [G loss: 1.046427]
[Epoch 29/50] [Batch 937/938] [D loss: 1.188294, acc: 57%] [G loss: 1.462691]
[Epoch 30/50] [Batch 937/938] [D loss: 1.141519, acc: 65%] [G loss: 1.202172]
[Epoch 31/50] [Batch 937/938] [D loss: 1.252719, acc: 60%] [G loss: 0.761035]
[Epoch 32/50] [Batch 937/938] [D loss: 1.182667, acc: 62%] [G loss: 1.138950]
[Epoch 33/50] [Batch 937/938] [D loss: 1.138652, acc: 57%] [G loss: 1.878641]
[Epoch 34/50] [Batch 937/938] [D loss: 1.614118, acc: 40%] [G loss: 1.174179]
[Epoch 35/50] [Batch 937/938] [D loss: 1.127694, acc: 59%] [G loss: 1.391736]
[Epoch 36/50] [Batch 937/938] [D loss: 1.144518, acc: 67%] [G loss: 0.531392]
[Epoch 37/50] [Batch 937/938] [D loss: 1.133765, acc: 59%] [G loss: 0.514877]
[Epoch 38/50] [Batch 937/938] [D loss: 1.562284, acc: 48%] [G loss: 2.186804]
[Epoch 39/50] [Batch 937/938] [D loss: 1.197355, acc: 67%] [G loss: 1.720435]
[Epoch 40/50] [Batch 937/938] [D loss: 1.140882, acc: 62%] [G loss: 2.072633]
[Epoch 41/50] [Batch 937/938] [D loss: 1.180019, acc: 56%] [G loss: 2.425399]
[Epoch 42/50] [Batch 937/938] [D loss: 1.028821, acc: 73%] [G loss: 3.478460]
[Epoch 43/50] [Batch 937/938] [D loss: 1.099987, acc: 76%] [G loss: 0.333971]
[Epoch 44/50] [Batch 937/938] [D loss: 1.421913, acc: 51%] [G loss: 0.661157]
[Epoch 45/50] [Batch 937/938] [D loss: 1.300432, acc: 54%] [G loss: 0.675104]
[Epoch 46/50] [Batch 937/938] [D loss: 1.011263, acc: 70%] [G loss: 0.876295]
[Epoch 47/50] [Batch 937/938] [D loss: 1.159203, acc: 70%] [G loss: 1.982926]
[Epoch 48/50] [Batch 937/938] [D loss: 1.027292, acc: 71%] [G loss: 0.962503]
[Epoch 49/50] [Batch 937/938] [D loss: 0.890597, acc: 87%] [G loss: 0.349576]
运行结果
总结
- SGAN在判别器的输出中增加了一个分支,用以对"真"进行分类
python
# 判断真假
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
# 判断类别
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax())
- 由于aux_layer是多分类输出,因此激活函数使用Softmax,其输出是个概率分布,总和为1