深度学习-01 Pytorch

torchvision是一个用于计算机视觉任务的Python包,它是PyTorch的一个扩展库。它提供了一些流行的数据集、模型架构和图像转换函数,以方便用户进行计算机视觉任务的开发和研究。

1.torchvision中包含了许多常用的计算机视觉数据集,如MNIST、CIFAR10、CIFAR100和ImageNet等。用户可以通过简单的接口加载这些数据集,并进行数据预处理、数据增强和数据加载等操作。

2.此外,torchvision还提供了一些常用的计算机视觉模型架构,如AlexNet、VGG、ResNet和DenseNet等。用户可以使用这些预训练的模型,或者根据自己的需求进行微调。

3.在图像转换方面,torchvision提供了一系列的图像预处理和数据增强函数,如裁剪、缩放、翻转、旋转、亮度调整和颜色增强等。这些函数可以用来对图像进行预处理,以提高模型的训练效果。

python 复制代码
import torchvision
from torch.utils.tensorboard import SummaryWriter

dataset_transform=torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])


# train_set=torchvision.datasets.CIFAR10("./dataset",train=True,download=True)
# test_set=torchvision.datasets.CIFAR10("./dataset",train=False,download=True)

# print(test_set[0])
# print(test_set.classes)
#
# img,target=test_set[0]
# print(img)
# print(target)
# print(test_set.classes(target))
# img.show()

# 把所有图片转换为tensor类型
train_set=torchvision.datasets.CIFAR10("./dataset",train=True,transform=dataset_transform,download=True)
test_set=torchvision.datasets.CIFAR10("./dataset",train=False,transform=dataset_transform,download=True)
print(test_set[0])

writer=SummaryWriter("p10")
for i in range(10):
    img,target=test_set[i]
    writer.add_image("test_set",img,i)

writer.close()

DataLoader是PyTorch库中的一个实用工具,用于加载和预处理数据,以供训练和测试深度学习模型使用。它提供了许多功能,使数据加载变得更加高效和灵活。DataLoader的主要功能包括:

1.数据加载和预处理:DataLoader能够自动加载数据,并在需要时进行预处理。它可以从本地磁盘、网络或其他数据源中加载数据,并将其转换为PyTorch张量格式。它还支持数据增强操作,例如随机裁剪、翻转和旋转,以增加训练数据的多样性。

2.批处理和并行处理:DataLoader能够将数据分成小批量进行处理,以加快训练过程。它还支持使用多个CPU核心或GPU对数据进行并行处理,以提高训练的效率。

3.数据打乱和重复:DataLoader能够自动打乱数据的顺序,并可以设置数据的重复次数,以增加训练的随机性和多样性。

4.数据加载器的配置和使用:DataLoader提供了丰富的配置选项,可以根据具体需求进行调整。它还提供了简单易用的API,使得数据加载和使用变得更加方便。

相关推荐
Blossom.118几秒前
知识图谱与大模型融合实战:基于GNN+RAG的企业级智能问答系统
人工智能·python·深度学习·神经网络·微服务·重构·知识图谱
十铭忘几秒前
SAM2跟踪的理解12——mask decoder
人工智能·计算机视觉
PS1232321 分钟前
隔爆型防爆压力变送器的多信号输出优势
大数据·人工智能
人工智能培训2 分钟前
国内外知名大模型及应用
人工智能·深度学习·神经网络·大模型·dnn·ai大模型·具身智能
bryant_meng4 分钟前
【GA-Net】《GA-Net: Guided Aggregation Net for End-to-end Stereo Matching》
人工智能·深度学习·计算机视觉·立体匹配·ganet
爱学习的张大4 分钟前
如何选择正确版本的CUDA和PyTorch安装
人工智能·pytorch·python
CoovallyAIHub5 分钟前
超越CUDA围墙:国产GPU在架构、工艺与软件栈的“三维替代”挑战
深度学习·算法·计算机视觉
serve the people5 分钟前
TensorFlow 2.0 手写数字分类教程之SparseCategoricalCrossentropy 核心原理(二)
人工智能·分类·tensorflow
大千AI助手5 分钟前
DeepSeek V3.2 技术解读:一次不靠“堆参数”的模型升级
人工智能·机器学习·agent·dsa·deepseek·deepseek-v3.2·大千ai助手
十铭忘7 分钟前
SAM2跟踪的理解13——mask decoder
人工智能·深度学习