神经网络卷积操作

文章目录

一、nn.Conv2d

nn.Conv2d 是 PyTorch 中的一个类,它代表了一个二维卷积层,通常用于处理图像数据。在深度学习和计算机视觉中,卷积层是构建卷积神经网络(CNN)的基本构件,它们能够从图像中提取特征。

二维卷积层 nn.Conv2d 的相关参数:

  • in_channels:输入图像的通道数。例如,对于彩色图像,通常 in_channels 为 3,因为彩色图像有 RGB 三个通道。
  • out_channels:输出特征图的通道数。这个参数决定了卷积层输出的特征图数量,也就是卷积核的数量。
  • kernel_size:卷积核的大小。它是一个元组或整数,指定了卷积核在每个空间维度(高度和宽度)上的尺寸。例如,kernel_size=3
    表示卷积核是 3x3 的。
  • stride:卷积的步长。它指定了卷积核在图像上滑动的间隔。默认值为 1,意味着卷积核每次移动一个像素。
  • padding:填充。它用于在输入图像的边界周围填充零。这通常用于控制输出特征图的空间尺寸。
  • dilation:膨胀。它用于控制卷积核中元素之间的间距,用于增大卷积核的感受野。
  • groups:分组卷积的组数。通过设置这个参数,可以使得卷积层的某些部分不与其他部分的输入或输出相连接,这在某些特定的网络架构中很有用。

二、卷积操作原理

假设输入图像是一个5x5的矩阵,而卷积核是一个3x3的矩阵,通过卷积操作得到结果矩阵

  • 当卷积步长stride=1,计算方式:
  • 把卷积核放在输入图像当中,也就是1x1+2x2+1x1+2x1+1x2=10,将得到的答案放在结果的第一个框框里头。

  • 以此类推,进行第二个操作:

  • 同样第三个操作:
  • 需要注意的是,卷积核不能出格子,也就是不能像下图操作:
  • 在第一行运行结束后,就往下面进行运算:

以此类推,将卷积核在输入图像中全部运算完成。

三、代码实现卷积操作

bash 复制代码
import torch
import torch.nn.functional as F
input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]])

#通过函数reshape进行格式的转换
input = torch.reshape(input,(1, 1, 5, 5))
kernel = torch.reshape(kernel,(1, 1, 3, 3))
#查看转换后的input和kernel格式
print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

注:因为conv2d的输入格式一定要是(x,y,z,t)4个数字形式,故需要使用reshape函数先进行数据的转换,然后再输入给conv2d当中。

运行结果:

可以看到输出的矩阵结果跟我们上面计算的结果是一致的。

相关推荐
吃茄子的猫几秒前
python中global全局变量
python
Flash.kkl1 分钟前
Python基础语法
开发语言·python
veminhe8 分钟前
Python(二) 容器类型与对应操作行为
python
独自归家的兔12 分钟前
基于 cosyvoice-v3-plus 的 个人音色复刻 (华为OBS)
人工智能·华为·语音识别
fantasy_arch12 分钟前
AV1视频编码位于图像边界的超级块划分
计算机视觉·音视频·av1
Legend NO2413 分钟前
如何构建自己高质量语料库?
人工智能·非结构化数据
人工干智能17 分钟前
调用client.beta.threads.runs.create后交由OpenAI云服务器端的处理
服务器·python·llm
Hcoco_me17 分钟前
大模型面试题23:对比学习原理-从通俗理解到核心逻辑(通用AI视角)
人工智能·rnn·深度学习·学习·自然语言处理·word2vec
Java后端的Ai之路18 分钟前
【神经网络基础】-神经网络优化方法全解析
人工智能·深度学习·神经网络·机器学习
高洁0119 分钟前
深度学习—卷积神经网络(2)
人工智能·深度学习·机器学习·transformer·知识图谱