神经网络卷积操作

文章目录

一、nn.Conv2d

nn.Conv2d 是 PyTorch 中的一个类,它代表了一个二维卷积层,通常用于处理图像数据。在深度学习和计算机视觉中,卷积层是构建卷积神经网络(CNN)的基本构件,它们能够从图像中提取特征。

二维卷积层 nn.Conv2d 的相关参数:

  • in_channels:输入图像的通道数。例如,对于彩色图像,通常 in_channels 为 3,因为彩色图像有 RGB 三个通道。
  • out_channels:输出特征图的通道数。这个参数决定了卷积层输出的特征图数量,也就是卷积核的数量。
  • kernel_size:卷积核的大小。它是一个元组或整数,指定了卷积核在每个空间维度(高度和宽度)上的尺寸。例如,kernel_size=3
    表示卷积核是 3x3 的。
  • stride:卷积的步长。它指定了卷积核在图像上滑动的间隔。默认值为 1,意味着卷积核每次移动一个像素。
  • padding:填充。它用于在输入图像的边界周围填充零。这通常用于控制输出特征图的空间尺寸。
  • dilation:膨胀。它用于控制卷积核中元素之间的间距,用于增大卷积核的感受野。
  • groups:分组卷积的组数。通过设置这个参数,可以使得卷积层的某些部分不与其他部分的输入或输出相连接,这在某些特定的网络架构中很有用。

二、卷积操作原理

假设输入图像是一个5x5的矩阵,而卷积核是一个3x3的矩阵,通过卷积操作得到结果矩阵

  • 当卷积步长stride=1,计算方式:
  • 把卷积核放在输入图像当中,也就是1x1+2x2+1x1+2x1+1x2=10,将得到的答案放在结果的第一个框框里头。

  • 以此类推,进行第二个操作:

  • 同样第三个操作:
  • 需要注意的是,卷积核不能出格子,也就是不能像下图操作:
  • 在第一行运行结束后,就往下面进行运算:

以此类推,将卷积核在输入图像中全部运算完成。

三、代码实现卷积操作

bash 复制代码
import torch
import torch.nn.functional as F
input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]])

#通过函数reshape进行格式的转换
input = torch.reshape(input,(1, 1, 5, 5))
kernel = torch.reshape(kernel,(1, 1, 3, 3))
#查看转换后的input和kernel格式
print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

注:因为conv2d的输入格式一定要是(x,y,z,t)4个数字形式,故需要使用reshape函数先进行数据的转换,然后再输入给conv2d当中。

运行结果:

可以看到输出的矩阵结果跟我们上面计算的结果是一致的。

相关推荐
2403_8757368711 分钟前
道品科技智慧农业中的自动气象检测站
网络·人工智能·智慧城市
海阔天空_201324 分钟前
Python pyautogui库:自动化操作的强大工具
运维·开发语言·python·青少年编程·自动化
零意@32 分钟前
ubuntu切换不同版本的python
windows·python·ubuntu
学术头条35 分钟前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典36 分钟前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法
ai_xiaogui39 分钟前
AIStarter教程:快速学会卸载AI项目【AI项目管理平台】
人工智能·ai作画·语音识别·ai写作·ai软件
思忖小下43 分钟前
Python基础学习_01
python
孙同学要努力44 分钟前
《深度学习》——深度学习基础知识(全连接神经网络)
人工智能·深度学习·神经网络
q567315231 小时前
在 Bash 中获取 Python 模块变量列
开发语言·python·bash
是萝卜干呀1 小时前
Backend - Python 爬取网页数据并保存在Excel文件中
python·excel·table·xlwt·爬取网页数据