神经网络卷积操作

文章目录

一、nn.Conv2d

nn.Conv2d 是 PyTorch 中的一个类,它代表了一个二维卷积层,通常用于处理图像数据。在深度学习和计算机视觉中,卷积层是构建卷积神经网络(CNN)的基本构件,它们能够从图像中提取特征。

二维卷积层 nn.Conv2d 的相关参数:

  • in_channels:输入图像的通道数。例如,对于彩色图像,通常 in_channels 为 3,因为彩色图像有 RGB 三个通道。
  • out_channels:输出特征图的通道数。这个参数决定了卷积层输出的特征图数量,也就是卷积核的数量。
  • kernel_size:卷积核的大小。它是一个元组或整数,指定了卷积核在每个空间维度(高度和宽度)上的尺寸。例如,kernel_size=3
    表示卷积核是 3x3 的。
  • stride:卷积的步长。它指定了卷积核在图像上滑动的间隔。默认值为 1,意味着卷积核每次移动一个像素。
  • padding:填充。它用于在输入图像的边界周围填充零。这通常用于控制输出特征图的空间尺寸。
  • dilation:膨胀。它用于控制卷积核中元素之间的间距,用于增大卷积核的感受野。
  • groups:分组卷积的组数。通过设置这个参数,可以使得卷积层的某些部分不与其他部分的输入或输出相连接,这在某些特定的网络架构中很有用。

二、卷积操作原理

假设输入图像是一个5x5的矩阵,而卷积核是一个3x3的矩阵,通过卷积操作得到结果矩阵

  • 当卷积步长stride=1,计算方式:
  • 把卷积核放在输入图像当中,也就是1x1+2x2+1x1+2x1+1x2=10,将得到的答案放在结果的第一个框框里头。

  • 以此类推,进行第二个操作:

  • 同样第三个操作:
  • 需要注意的是,卷积核不能出格子,也就是不能像下图操作:
  • 在第一行运行结束后,就往下面进行运算:

以此类推,将卷积核在输入图像中全部运算完成。

三、代码实现卷积操作

bash 复制代码
import torch
import torch.nn.functional as F
input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]])

#通过函数reshape进行格式的转换
input = torch.reshape(input,(1, 1, 5, 5))
kernel = torch.reshape(kernel,(1, 1, 3, 3))
#查看转换后的input和kernel格式
print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

注:因为conv2d的输入格式一定要是(x,y,z,t)4个数字形式,故需要使用reshape函数先进行数据的转换,然后再输入给conv2d当中。

运行结果:

可以看到输出的矩阵结果跟我们上面计算的结果是一致的。

相关推荐
nn在炼金7 小时前
FlashAttention 1 深度解读:原理、价值、应用与实战
人工智能·算法
沐雪轻挽萤7 小时前
pytorch模型部署基础知识
人工智能·pytorch·python
极客BIM工作室7 小时前
从GAN到Sora:生成式AI在图像与视频领域的技术演进全景
人工智能·生成对抗网络·计算机视觉
xxxxxmy7 小时前
相向双指针—接雨水
python·相向双指针
nix.gnehc7 小时前
PyTorch数据加载与预处理
人工智能·pytorch·python
skywalk81637 小时前
用Trae的sole模式来模拟文心快码comate的Spec Mode模式来做一个esp32操作系统的项目
人工智能·comate·trae·esp32c3
*星星之火*7 小时前
【大白话 AI 答疑】第5篇 从 “窄域专精” 到 “广谱通用”:传统机器学习与大模型的 6 大核心区别
人工智能·机器学习
roman_日积跬步-终至千里7 小时前
【模式识别与机器学习(7)】主要算法与技术(下篇:高级模型与集成方法)之 扩展线性模型(Extending Linear Models)
人工智能·算法·机器学习
张飞签名上架7 小时前
苹果TF签名:革新应用分发的解决方案
人工智能·安全·ios·苹果签名·企业签名·苹果超级签名
Sindy_he7 小时前
2025最新版微软GraphRAG 2.0.0本地部署教程:基于Ollama快速构建知识图谱
python·microsoft·大模型·知识图谱·rag