神经网络卷积操作

文章目录

一、nn.Conv2d

nn.Conv2d 是 PyTorch 中的一个类,它代表了一个二维卷积层,通常用于处理图像数据。在深度学习和计算机视觉中,卷积层是构建卷积神经网络(CNN)的基本构件,它们能够从图像中提取特征。

二维卷积层 nn.Conv2d 的相关参数:

  • in_channels:输入图像的通道数。例如,对于彩色图像,通常 in_channels 为 3,因为彩色图像有 RGB 三个通道。
  • out_channels:输出特征图的通道数。这个参数决定了卷积层输出的特征图数量,也就是卷积核的数量。
  • kernel_size:卷积核的大小。它是一个元组或整数,指定了卷积核在每个空间维度(高度和宽度)上的尺寸。例如,kernel_size=3
    表示卷积核是 3x3 的。
  • stride:卷积的步长。它指定了卷积核在图像上滑动的间隔。默认值为 1,意味着卷积核每次移动一个像素。
  • padding:填充。它用于在输入图像的边界周围填充零。这通常用于控制输出特征图的空间尺寸。
  • dilation:膨胀。它用于控制卷积核中元素之间的间距,用于增大卷积核的感受野。
  • groups:分组卷积的组数。通过设置这个参数,可以使得卷积层的某些部分不与其他部分的输入或输出相连接,这在某些特定的网络架构中很有用。

二、卷积操作原理

假设输入图像是一个5x5的矩阵,而卷积核是一个3x3的矩阵,通过卷积操作得到结果矩阵

  • 当卷积步长stride=1,计算方式:
  • 把卷积核放在输入图像当中,也就是1x1+2x2+1x1+2x1+1x2=10,将得到的答案放在结果的第一个框框里头。

  • 以此类推,进行第二个操作:

  • 同样第三个操作:
  • 需要注意的是,卷积核不能出格子,也就是不能像下图操作:
  • 在第一行运行结束后,就往下面进行运算:

以此类推,将卷积核在输入图像中全部运算完成。

三、代码实现卷积操作

bash 复制代码
import torch
import torch.nn.functional as F
input = torch.tensor([
    [1, 2, 0, 3, 1],
    [0, 1, 2, 3, 1],
    [1, 2, 1, 0, 0],
    [5, 2, 3, 1, 1],
    [2, 1, 0, 1, 1]])

kernel = torch.tensor([
    [1, 2, 1],
    [0, 1, 0],
    [2, 1, 0]])

#通过函数reshape进行格式的转换
input = torch.reshape(input,(1, 1, 5, 5))
kernel = torch.reshape(kernel,(1, 1, 3, 3))
#查看转换后的input和kernel格式
print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

注:因为conv2d的输入格式一定要是(x,y,z,t)4个数字形式,故需要使用reshape函数先进行数据的转换,然后再输入给conv2d当中。

运行结果:

可以看到输出的矩阵结果跟我们上面计算的结果是一致的。

相关推荐
我材不敲代码2 小时前
Python实现打包贪吃蛇游戏
开发语言·python·游戏
0思必得04 小时前
[Web自动化] Selenium处理动态网页
前端·爬虫·python·selenium·自动化
水如烟4 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
韩立学长4 小时前
【开题答辩实录分享】以《基于Python的大学超市仓储信息管理系统的设计与实现》为例进行选题答辩实录分享
开发语言·python
大山同学4 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
qq_192779874 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
薛定谔的猫19824 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
u0109272715 小时前
使用Plotly创建交互式图表
jvm·数据库·python
爱学习的阿磊5 小时前
Python GUI开发:Tkinter入门教程
jvm·数据库·python
壮Sir不壮5 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw