MATLAB卡尔曼|卡尔曼滤波的公式【线性】

卡尔曼滤波

卡尔曼滤波(Kalman Filter) 一种用于估计系统状态的数学算法,不是类似于高通、低通滤波器那样的频域滤波。

卡尔曼滤波基于线性动态系统的假设,它将系统的状态表示为均值和协方差矩阵,通过递归地更新和预测这些值来实现对系统状态的估计。卡尔曼滤波有两个主要的步骤:预测和更新

卡尔曼滤波具有一些优点,例如对噪声和不确定性的鲁棒性较强,能够提供较为精确的估计结果,并且计算效率较高。然而,卡尔曼滤波的应用前提是系统满足线性动态系统的假设,对于非线性系统,需要通过扩展卡尔曼滤波(Extended Kalman Filter)或无迹卡尔曼滤波(Unscented Kalman Filter)等变种算法来进行处理。

滤波结构

  • 预测步骤中,卡尔曼滤波使用系统模型和上一时刻的状态估计来预测当前时刻的状态,并计算出预测状态的均值和协方差矩阵。

  • 更新步骤中,卡尔曼滤波使用当前时刻的测量数据和预测状态的均值和协方差矩阵,通过最小二乘法得到对当前状态的估计,并重新计算估计的状态的均值和协方差矩阵。

重要公式

下面从几个重要公式的角度来分析卡尔曼滤波:

  1. 观测的一步转移,根据当前时刻的X(k-1)、状态转移矩阵 F F F、输入向量 u k − 1 u_{k-1} uk−1计算下一时刻的X_{k}
    X ^ k − = F X k − 1 + G u k − 1 \hat X_{k}^- = FX_{k-1}+G u_{k-1} X^k−=FXk−1+Guk−1

  2. 协方差预测:
    P k − = F P k − 1 F T + Q k P_{k}^{-}=FP_{k-1}F^{T}+Q_{k} Pk−=FPk−1FT+Qk

  3. 计算增益:
    K k = P k − H T ( H P k − H T + R ) − 1 K_k=P_k^-H^T(HP_k^-H^T+R)^{-1} Kk=Pk−HT(HPk−HT+R)−1

  4. 计算估计值:
    X ^ t = X ^ t − + K t ( Z k − H X ^ k − ) \hat{X}{t}=\hat{X}{t}^{-}+K_{t}(Z_{k}-H\hat{X}_{k}^{-}) X^t=X^t−+Kt(Zk−HX^k−)

  5. 更新协方差:
    P k = ( I − K k H ) P k − P_k=(I-K_kH)P_k^- Pk=(I−KkH)Pk−

其他公式

表示观测预测的公式:
Z ^ k = H X k \hat{Z}{k} = HX{k} Z^k=HXk

相关推荐
止观止20 分钟前
JavaScript对象创建9大核心技术解析
开发语言·javascript·ecmascript
screenCui2 小时前
macOS运行python程序遇libiomp5.dylib库冲突错误解决方案
开发语言·python·macos
linux kernel2 小时前
第七讲:C++中的string类
开发语言·c++
玩代码2 小时前
Java线程池原理概述
java·开发语言·线程池
泰勒疯狂展开2 小时前
Java研学-MongoDB(三)
java·开发语言·mongodb
zzywxc7872 小时前
AI技术通过提示词工程(Prompt Engineering)正在深度重塑职场生态和行业格局,这种变革不仅体现在效率提升,更在重构人机协作模式。
java·大数据·开发语言·人工智能·spring·重构·prompt
高hongyuan3 小时前
Go语言教程-占位符及演示代码
开发语言·后端·golang
她说人狗殊途3 小时前
多线程 JAVA
java·开发语言
星竹晨L3 小时前
C语言——预处理详解
c语言·开发语言
Freak嵌入式3 小时前
一文速通 Python 并行计算:13 Python 异步编程-基本概念与事件循环和回调机制
开发语言·python·嵌入式·协程·硬件·异步编程