[机器学习]线性回归算法

1 线性回归简介

概念:利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

weight :权重;bias 偏置

线性回归分类:一元线性回归、多元线性回归

应用场景:只要目标值连续,就使用线性回归

2 线性回归问题求解

2.1 线性回归API

python 复制代码
from sklearn.linear_model import LinearRegression
x=[[160],[166],[172],[174],[180]]
y=[56.3,60.6,65.1,68.5,75]

LR=LinearRegression()
LR.fit(x,y)
# 斜率
print(LR.coef_)
# 截距
print(LR.intercept_)
LR.predict([[176]])

2.2 损失函数

3 导数和矩阵

4 正规方程法

5 梯度下降法

6 线性回归模型评估

7 波士顿房价预测

7.1 正规方程法

python 复制代码
# 波士顿房价预测正规方程法
# 导包
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np

# 获取数据
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url,sep=r"\s+",skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

# 划分数据
x_train,x_test,y_train,y_test=train_test_split(data,target,random_state=22)
# 特征工程
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
# 模型训练
LR=LinearRegression()
LR.fit(x_train,y_train)
print(LR.intercept_)
print(LR.coef_)
# 模型预测
y_predict=LR.predict(x_test)
print(y_predict)

# 模型评估
print(mean_squared_error(y_predict,y_test))

7.2 梯度下降法

python 复制代码
# 波士顿房价预测梯度下降法
# 导包
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import LinearRegression,SGDRegressor
import pandas as pd
import numpy as np

# 获取数据
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url,sep=r"\s+",skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]

# 划分数据
x_train,x_test,y_train,y_test=train_test_split(data,target,random_state=22)
# 特征工程
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
# 模型训练
LR=SGDRegressor(max_iter=100,learning_rate='constant',eta0=0.001)
LR.fit(x_train,y_train)
print(LR.intercept_)
print(LR.coef_)
# 模型预测
y_predict=LR.predict(x_test)
print(y_predict)

# 模型评估
print(mean_squared_error(y_predict,y_test))

8 欠拟合和过拟合

python 复制代码
# 欠拟合
# 导包
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 创建数据
np.random.seed(666)
# 均匀分布
x=np.random.uniform(-3,3,size=100)
print(x.shape)
# 正态分布
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)
# 模型训练
X=x.reshape(-1,1)
print(X.shape)
LR=LinearRegression()
LR.fit(X,y)

# 模型预测
y_predict=LR.predict(X)
print(y_predict.shape)
# 模型评估
print(mean_squared_error(y,y_predict))
# 可视化
plt.scatter(x,y)
plt.plot(x,y_predict,color='r')
plt.show()
python 复制代码
# 正好拟合
# 导包
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 创建数据
np.random.seed(666)
# 均匀分布
x=np.random.uniform(-3,3,size=100)
print(x.shape)
# 正态分布
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)
# 模型训练
X=x.reshape(-1,1)
print(X.shape)
X2=np.hstack([X,X**2])
LR=LinearRegression()
LR.fit(X2,y)

# 模型预测
y_predict=LR.predict(X2)
print(y_predict.shape)
# 模型评估
print(mean_squared_error(y,y_predict))
# 可视化
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()
python 复制代码
# 过拟合
# 导包
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 创建数据
np.random.seed(666)
# 均匀分布
x=np.random.uniform(-3,3,size=100)
print(x.shape)
# 正态分布
y=0.5*x**2+x+2+np.random.normal(0,1,size=100)
# 模型训练
X=x.reshape(-1,1)
print(X.shape)
X3=np.hstack([X,X**2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
LR=LinearRegression()
LR.fit(X3,y)

# 模型预测
y_predict=LR.predict(X3)
print(y_predict.shape)
# 模型评估
print(mean_squared_error(y,y_predict))
# 可视化
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict[np.argsort(x)],color='r')
plt.show()

8.1 欠拟合和过拟合的原因和解决方案

9 正则化

缓解过拟合的方法叫做正则化。

9.1 L1正则化

9.1 L1正则化缓解过拟合的原理

9.2 L2正则化缓解过拟合的原理

相关推荐
艾莉丝努力练剑13 分钟前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
醉颜凉15 分钟前
环形房屋如何 “安全劫舍”?动态规划解题逻辑与技巧
c语言·算法·动态规划
大雨淅淅18 分钟前
一文搞懂动态规划:从入门到精通
算法·动态规划
不去幼儿园20 分钟前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
随意起个昵称21 分钟前
【二分】洛谷P2920,P2985做题小记
c++·算法
二川bro24 分钟前
数据可视化进阶:Python动态图表制作实战
开发语言·python·信息可视化
没书读了27 分钟前
计算机组成原理-考前记忆清单
线性代数·算法
青青子衿_2139 分钟前
TikTok爬取——视频、元数据、一级评论
爬虫·python·selenium
Hcoco_me1 小时前
大模型面试题5:矩阵(M*M)特征值分解的步骤
算法·机器学习·矩阵
忘却的旋律dw1 小时前
使用LLM模型的tokenizer报错AttributeError: ‘dict‘ object has no attribute ‘model_type‘
人工智能·pytorch·python