动手学深度学习(pytorch土堆)-02TensorBoard的使用

1.可视化

代码使用了 torch.utils.tensorboard 将数据记录到 TensorBoard 以便可视化。具体来说,它将标量数据记录到目录 logs 中,使用的是 SummaryWriter 类。

代码分解如下:

  1. SummaryWriter("logs") :初始化一个 TensorBoard 的写入器,日志会保存到 "logs" 目录。
  2. writer.add_scalar("y=x", i, i) :在循环的每一次迭代中,写入器都会记录一个名为 "y=x" 的标量数据,标量的值和步数都等于 i。这实际上是在记录一条 y = x 的直线。
  3. writer.close():关闭写入器,确保所有数据都已写入到磁盘。

运行这段代码后,使用以下命令在 pycharm控制台中可视化结果:

bash 复制代码
tensorboard --logdir=logs

然后在浏览器中访问 localhost:6006 来查看记录的标量数据。

c 复制代码
from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("logs")
# writer.add_image()

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()

2显示图像

c 复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter("logs")
image_path="hymenoptera_data/train/ants/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
writer.add_image("test",img_array,1,dataformats="HWC")

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()
相关推荐
带娃的IT创业者10 分钟前
机器学习实战(8):降维技术——主成分分析(PCA)
人工智能·机器学习·分类·聚类
调皮的芋头34 分钟前
iOS各个证书生成细节
人工智能·ios·app·aigc
flying robot3 小时前
人工智能基础之数学基础:01高等数学基础
人工智能·机器学习
Moutai码农3 小时前
机器学习-生命周期
人工智能·python·机器学习·数据挖掘
188_djh3 小时前
# 10分钟了解DeepSeek,保姆级部署DeepSeek到WPS,实现AI赋能
人工智能·大语言模型·wps·ai技术·ai应用·deepseek·ai知识
Jackilina_Stone3 小时前
【DL】浅谈深度学习中的知识蒸馏 | 输出层知识蒸馏
人工智能·深度学习·机器学习·蒸馏
bug404_4 小时前
分布式大语言模型服务引擎vLLM论文解读
人工智能·分布式·语言模型
Logout:4 小时前
[AI]docker封装包含cuda cudnn的paddlepaddle PaddleOCR
人工智能·docker·paddlepaddle
OJAC近屿智能4 小时前
苹果新品今日发布,AI手机市场竞争加剧,近屿智能专注AI人才培养
大数据·人工智能·ai·智能手机·aigc·近屿智能
代码猪猪傻瓜coding5 小时前
关于 形状信息提取的说明
人工智能·python·深度学习