动手学深度学习(pytorch土堆)-02TensorBoard的使用

1.可视化

代码使用了 torch.utils.tensorboard 将数据记录到 TensorBoard 以便可视化。具体来说,它将标量数据记录到目录 logs 中,使用的是 SummaryWriter 类。

代码分解如下:

  1. SummaryWriter("logs") :初始化一个 TensorBoard 的写入器,日志会保存到 "logs" 目录。
  2. writer.add_scalar("y=x", i, i) :在循环的每一次迭代中,写入器都会记录一个名为 "y=x" 的标量数据,标量的值和步数都等于 i。这实际上是在记录一条 y = x 的直线。
  3. writer.close():关闭写入器,确保所有数据都已写入到磁盘。

运行这段代码后,使用以下命令在 pycharm控制台中可视化结果:

bash 复制代码
tensorboard --logdir=logs

然后在浏览器中访问 localhost:6006 来查看记录的标量数据。

c 复制代码
from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("logs")
# writer.add_image()

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()

2显示图像

c 复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter("logs")
image_path="hymenoptera_data/train/ants/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
writer.add_image("test",img_array,1,dataformats="HWC")

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()
相关推荐
陈天伟教授几秒前
人工智能应用- 语言处理:02.机器翻译:规则方法
人工智能·深度学习·神经网络·语言模型·自然语言处理·机器翻译
人机与认知实验室16 分钟前
一些容易被人工智能取代的职业
人工智能
茶栀(*´I`*)20 分钟前
【NLP入门笔记】:自然语言处理基础与文本预处理
人工智能·自然语言处理·nlp
却道天凉_好个秋23 分钟前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
Lun3866buzha28 分钟前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
藦卡机器人32 分钟前
国产机械臂做的比较好的品牌有哪些?
大数据·数据库·人工智能
迎仔44 分钟前
06-AI开发进阶
人工智能
陈天伟教授1 小时前
人工智能应用- 语言处理:01.机器翻译:人类语言的特点
人工智能·自然语言处理·机器翻译
Codebee1 小时前
OoderAgent 相比主流Agent框架的五大核心独特优势
人工智能
home_4981 小时前
与gemini关于神的对话
人工智能·科幻·神学