动手学深度学习(pytorch土堆)-02TensorBoard的使用

1.可视化

代码使用了 torch.utils.tensorboard 将数据记录到 TensorBoard 以便可视化。具体来说,它将标量数据记录到目录 logs 中,使用的是 SummaryWriter 类。

代码分解如下:

  1. SummaryWriter("logs") :初始化一个 TensorBoard 的写入器,日志会保存到 "logs" 目录。
  2. writer.add_scalar("y=x", i, i) :在循环的每一次迭代中,写入器都会记录一个名为 "y=x" 的标量数据,标量的值和步数都等于 i。这实际上是在记录一条 y = x 的直线。
  3. writer.close():关闭写入器,确保所有数据都已写入到磁盘。

运行这段代码后,使用以下命令在 pycharm控制台中可视化结果:

bash 复制代码
tensorboard --logdir=logs

然后在浏览器中访问 localhost:6006 来查看记录的标量数据。

c 复制代码
from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("logs")
# writer.add_image()

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()

2显示图像

c 复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter("logs")
image_path="hymenoptera_data/train/ants/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
writer.add_image("test",img_array,1,dataformats="HWC")

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()
相关推荐
HPC_fac1305206781621 分钟前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd3 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao4 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
ZHOU_WUYI8 小时前
3.langchain中的prompt模板 (few shot examples in chat models)
人工智能·langchain·prompt
如若1238 小时前
主要用于图像的颜色提取、替换以及区域修改
人工智能·opencv·计算机视觉
老艾的AI世界8 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
DK221518 小时前
机器学习系列----关联分析
人工智能·机器学习
Robot2519 小时前
Figure 02迎重大升级!!人形机器人独角兽[Figure AI]商业化加速
人工智能·机器人·微信公众平台
浊酒南街9 小时前
Statsmodels之OLS回归
人工智能·数据挖掘·回归
畅联云平台10 小时前
美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设
人工智能·物联网