动手学深度学习(pytorch土堆)-02TensorBoard的使用

1.可视化

代码使用了 torch.utils.tensorboard 将数据记录到 TensorBoard 以便可视化。具体来说,它将标量数据记录到目录 logs 中,使用的是 SummaryWriter 类。

代码分解如下:

  1. SummaryWriter("logs") :初始化一个 TensorBoard 的写入器,日志会保存到 "logs" 目录。
  2. writer.add_scalar("y=x", i, i) :在循环的每一次迭代中,写入器都会记录一个名为 "y=x" 的标量数据,标量的值和步数都等于 i。这实际上是在记录一条 y = x 的直线。
  3. writer.close():关闭写入器,确保所有数据都已写入到磁盘。

运行这段代码后,使用以下命令在 pycharm控制台中可视化结果:

bash 复制代码
tensorboard --logdir=logs

然后在浏览器中访问 localhost:6006 来查看记录的标量数据。

c 复制代码
from torch.utils.tensorboard import SummaryWriter
writer=SummaryWriter("logs")
# writer.add_image()

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()

2显示图像

c 复制代码
from torch.utils.tensorboard import SummaryWriter
import numpy as np
from PIL import Image
writer=SummaryWriter("logs")
image_path="hymenoptera_data/train/ants/0013035.jpg"
img_PIL=Image.open(image_path)
img_array=np.array(img_PIL)
writer.add_image("test",img_array,1,dataformats="HWC")

for i in range(100):
    writer.add_scalar("y=x",i,i)
writer.close()
相关推荐
一点.点2 分钟前
李沐动手深度学习(pycharm中运行笔记)——05.线性代数
pytorch·笔记·python·深度学习·pycharm·动手深度学习
白熊18810 分钟前
【计算机视觉】CV项目实战- 深度解析TorchVision_Maskrcnn:基于PyTorch的实例分割实战指南
人工智能·pytorch·计算机视觉
安科瑞-小李15 分钟前
管理+技术”双轮驱动工业企业能源绿色转型
大数据·人工智能
AI假装科研21 分钟前
即插即用模块(3) -LSK 特征提取
人工智能·深度学习·计算机视觉
愚昧之山绝望之谷开悟之坡27 分钟前
什么是视频上墙
人工智能·笔记
pljnb35 分钟前
SVM(支持向量机)
人工智能·机器学习·支持向量机
掘金詹姆斯35 分钟前
LangChain4j—持久化聊天记忆 Persistence(五)
java·人工智能
梓羽玩Python1 小时前
开源AI代理爆火!Suna:3天内新增5.5K+标星,自然对话驱动的自动化神器!
人工智能·python·github
新智元1 小时前
70% 大小,100% 准确!完美压缩 LLM 性能 0 损失,推理速度最高飙升 39 倍
人工智能·openai
Ann1 小时前
RAG:让AI回答更“靠谱”
人工智能·llm