数学基础 -- 线性代数之克罗内克函数 Kronecker delta

克罗内克δ函数教学

1. 克罗内克δ函数的定义

克罗内克δ函数(Kronecker delta)定义为:

δ i j = { 1 , 当 i = j , 0 , 当 i ≠ j . \delta_{ij} = \begin{cases} 1, & \text{当 } i = j, \\ 0, & \text{当 } i \neq j. \end{cases} δij={1,0,当 i=j,当 i=j.

也就是说,当 i = j i = j i=j 时, δ i j = 1 \delta_{ij} = 1 δij=1;当 i ≠ j i \neq j i=j 时, δ i j = 0 \delta_{ij} = 0 δij=0。

2. 克罗内克δ函数的性质

2.1 对称性

克罗内克δ函数是对称的:
δ i j = δ j i . \delta_{ij} = \delta_{ji}. δij=δji.

2.2 乘积性质

对任意数 a i a_i ai,克罗内克δ函数有以下性质:
∑ i a i δ i j = a j . \sum_{i} a_i \delta_{ij} = a_j. i∑aiδij=aj.

2.3 单位矩阵的表示

克罗内克δ函数常用于表示单位矩阵 I I I:
I i j = δ i j . I_{ij} = \delta_{ij}. Iij=δij.

在单位矩阵中, i = j i = j i=j 的位置元素为 1,其他元素为 0。

2.4 正交基的表示

克罗内克δ函数用于表示正交基的内积:
e i ⋅ e j = δ i j . \mathbf{e}_i \cdot \mathbf{e}j = \delta{ij}. ei⋅ej=δij.

当 i = j i = j i=j 时,内积为 1;当 i ≠ j i \neq j i=j 时,内积为 0。

3. 克罗内克δ函数的应用

3.1 矩阵运算

在矩阵运算中,克罗内克δ函数常用于简化表示。例如,矩阵乘法中的单位矩阵可以用 δ i j \delta_{ij} δij 表示。

3.2 正交多项式

在正交多项式(如勒让德多项式)中,克罗内克δ函数用于表示正交性。例如:
∫ − 1 1 P n ( x ) P m ( x )   d x = 2 2 n + 1 δ m n . \int_{-1}^{1} P_n(x) P_m(x) \, dx = \frac{2}{2n + 1} \delta_{mn}. ∫−11Pn(x)Pm(x)dx=2n+12δmn.

当 n ≠ m n \neq m n=m 时,积分为 0;当 n = m n = m n=m 时,积分为常数。

3.3 量子力学中的应用

在量子力学中,克罗内克δ函数用于描述不同量子态的正交性:
⟨ i ∣ j ⟩ = δ i j . \langle i | j \rangle = \delta_{ij}. ⟨i∣j⟩=δij.

这表示不同的量子态是正交的,相同的态归一化为 1。

3.4 张量分析

在张量分析中,克罗内克δ函数用于张量的缩并运算,通过 δ i j \delta_{ij} δij 实现从高维张量到低维张量的转换。

4. 总结

克罗内克δ函数 δ i j \delta_{ij} δij 是一个重要的工具,广泛应用于线性代数、量子力学、正交多项式和张量分析等多个领域。它主要用于检测两个变量是否相等,并用于表示正交性、单位矩阵以及基向量的内积结果。

相关推荐
聚客AI7 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v9 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工11 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农13 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了13 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo14 小时前
322:零钱兑换(三种方法)
算法
NAGNIP1 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队1 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法