数学基础 -- 线性代数之克罗内克函数 Kronecker delta

克罗内克δ函数教学

1. 克罗内克δ函数的定义

克罗内克δ函数(Kronecker delta)定义为:

δ i j = { 1 , 当 i = j , 0 , 当 i ≠ j . \delta_{ij} = \begin{cases} 1, & \text{当 } i = j, \\ 0, & \text{当 } i \neq j. \end{cases} δij={1,0,当 i=j,当 i=j.

也就是说,当 i = j i = j i=j 时, δ i j = 1 \delta_{ij} = 1 δij=1;当 i ≠ j i \neq j i=j 时, δ i j = 0 \delta_{ij} = 0 δij=0。

2. 克罗内克δ函数的性质

2.1 对称性

克罗内克δ函数是对称的:
δ i j = δ j i . \delta_{ij} = \delta_{ji}. δij=δji.

2.2 乘积性质

对任意数 a i a_i ai,克罗内克δ函数有以下性质:
∑ i a i δ i j = a j . \sum_{i} a_i \delta_{ij} = a_j. i∑aiδij=aj.

2.3 单位矩阵的表示

克罗内克δ函数常用于表示单位矩阵 I I I:
I i j = δ i j . I_{ij} = \delta_{ij}. Iij=δij.

在单位矩阵中, i = j i = j i=j 的位置元素为 1,其他元素为 0。

2.4 正交基的表示

克罗内克δ函数用于表示正交基的内积:
e i ⋅ e j = δ i j . \mathbf{e}_i \cdot \mathbf{e}j = \delta{ij}. ei⋅ej=δij.

当 i = j i = j i=j 时,内积为 1;当 i ≠ j i \neq j i=j 时,内积为 0。

3. 克罗内克δ函数的应用

3.1 矩阵运算

在矩阵运算中,克罗内克δ函数常用于简化表示。例如,矩阵乘法中的单位矩阵可以用 δ i j \delta_{ij} δij 表示。

3.2 正交多项式

在正交多项式(如勒让德多项式)中,克罗内克δ函数用于表示正交性。例如:
∫ − 1 1 P n ( x ) P m ( x )   d x = 2 2 n + 1 δ m n . \int_{-1}^{1} P_n(x) P_m(x) \, dx = \frac{2}{2n + 1} \delta_{mn}. ∫−11Pn(x)Pm(x)dx=2n+12δmn.

当 n ≠ m n \neq m n=m 时,积分为 0;当 n = m n = m n=m 时,积分为常数。

3.3 量子力学中的应用

在量子力学中,克罗内克δ函数用于描述不同量子态的正交性:
⟨ i ∣ j ⟩ = δ i j . \langle i | j \rangle = \delta_{ij}. ⟨i∣j⟩=δij.

这表示不同的量子态是正交的,相同的态归一化为 1。

3.4 张量分析

在张量分析中,克罗内克δ函数用于张量的缩并运算,通过 δ i j \delta_{ij} δij 实现从高维张量到低维张量的转换。

4. 总结

克罗内克δ函数 δ i j \delta_{ij} δij 是一个重要的工具,广泛应用于线性代数、量子力学、正交多项式和张量分析等多个领域。它主要用于检测两个变量是否相等,并用于表示正交性、单位矩阵以及基向量的内积结果。

相关推荐
LDG_AGI2 分钟前
【推荐系统】深度学习训练框架(六):PyTorch DDP(DistributedDataParallel)数据并行分布式深度学习原理
人工智能·pytorch·分布式·python·深度学习·算法·spark
嘟嘟w5 分钟前
垃圾回收算法
算法
胖咕噜的稞达鸭10 分钟前
算法入门:专题二分查找算法 模板总结 题目练手 :排序数组中查找元素的第一个和最后一个位置 第一个错误的版本 查找x的平方根 搜索插入位置 山脉数组的封顶索引
c语言·c++·算法·leetcode
松涛和鸣12 分钟前
21、单向链表完整实现与核心技巧总结
linux·c语言·数据结构·算法·链表
TL滕23 分钟前
从0开始学算法——第三天(数据结构的操作)
数据结构·笔记·学习·算法
Aaron158833 分钟前
基于FPGA实现卷积方法比较分析
arm开发·算法·fpga开发·硬件架构·硬件工程·射频工程·基带工程
AndrewHZ1 小时前
【图像处理基石】什么是分水岭算法?
图像处理·算法·计算机视觉·图像分割·cv·形态学分割
前端小L1 小时前
回溯算法专题(五):去重与剪枝的双重奏——攻克「组合总和 II」
算法·剪枝
TL滕1 小时前
从0开始学算法——第三天(数据结构的多样性)
数据结构·笔记·学习·算法
V1ncent Chen1 小时前
人工智能的基石之一:算法
人工智能·算法