断点回归模型

断点回归(Regression Discontinuity Design, RDD)是一种准实验设计方法,用于评估政策或其他干预措施的效果。这种方法利用了一个清晰的阈值或"断点",在这个阈值上,处理状态(例如是否接受某种干预)会突然改变。通过比较断点两侧单位的差异,可以估计出干预效果。

一个生活中的例子是关于学生的奖学金分配。假设一所大学设立了一项奖学金,只有那些平均成绩达到80分以上的学生才有资格获得。这里,80分就是断点。在80分之上的学生和80分之下的学生在其他方面可能非常相似,但由于这个政策,他们的一个关键区别就是前者获得了奖学金而后者没有。

  • 有一个突变过程,想象一下分段跳跃函数

反事实:

如果你不读博,你现在在干嘛?可惜你已经读博了,回不去了。所以反事实很难构建。

取平均后的效应( S 1 − S 0 S_1-S_0 S1−S0)是被高估的。

原因:

  • 1.高分可能人更聪明,可能获得更好的发展空间

  • 2.高分人的家庭条件更好,实习的机会更多,家庭的社会资源更广

  • 3.。。。。就是原因可能并不完全来自【政策、处理】的效应。
    那么该如何估计呢?

  • 1.设计一个小窗

  • 2.在小窗内建立一个模型,但限制在小窗范围内

  • 3.用前一个断点代替反事实

  • 4.两者相减,得到处理效应

  • 断点推文

模拟实验验证
  • 产生数据
  • 数据可视化


传统估计方法
  • 简单均值比较

  • 全样本回归


    分别估计断点前后的线,计算出 τ 2 − τ 1 \tau_2-\tau_1 τ2−τ1就是处理效应。
    这种也是高估的。
  • 下面展示的是模型设定 造成的偏差

  • 下面是正解
断点:多项式回归-二次函数


断点:局部线性
  • 适用条件:在断点局部有足够多的数据


RDD估计-理论
  • 截距的阐释

  • 以上就是一个平移【左加右减】,可以看出线不动,动坐标轴

  • x c < 0 xc<0 xc<0 control 组 and x c > 0 xc>0 xc>0 treat组

  • 其实用用 α 1 \alpha_1 α1当作 α 2 \alpha_2 α2反事实。

  • 关于h(窗宽)h越大,样本区间越大,估计越准确,但风险越高(样本区间的x和y不一定是线性关系),h越小,线性拟合越合理。

分两种情形的讨论

  • 模型-平行斜率(左1)
  • 模型-变斜率(左2、3)
    注意在模型假设的形式上的区别。

当h扩大,线性假设可能不成立,如下图。所以,可以采取加平方项的局部多项式回归。模型假设如下(右下角)


记住一点:RDD算的处理效应其实就是在断点两边分别估完方程后与y【断点竖向轴线】的交叉值的差 其实斜率不重要。

RDD的stata模拟
  • 标准stata的RDD实现代码
最优带宽的选择
bash 复制代码
rdrobust y x  自动选择带宽
  • 一般在论文中要报告:左右两边的图像拟合情况。下面是代码和图像
  • 注意:上图的散点其实是的分组 求平均的
  • 比如:N=4000,带宽内的样本占比0.2,N1=800,在左右分成20组,一组N2=20,对组内求平均,左右各画20个点。
扩展:是否加入控制变量

连老师:其实不用 ,加入控制变量会出现变量冗余,通过局部多项式估计(1次2次3次项作为控制)之后,其实就够了,但一部分文献做了,可能是为了估得更准。

建议:都行,目前在争论。

关于局部多项式【高阶问题】 项数的选择问题

给出实验

模拟数据给出:阶数似乎越大越好,但这是基于我们知道模拟数据的真实情况,日常科研中,我们不是上帝,不知道真是的处理效果。

  • 解决办法:信息准则

  • AIC的模型更丰满(参数更多)-选M8
  • BIC的模型更骨干(参数较少)-先M5
核加权局部多项式
  • 用核密度函数估计
bash 复制代码
lpoly y x if x<0 ,at(cut) gen(av_y0) 左边条件
lpoly y x if x>=0 ,at(cut) gen(av_y1) 左边条件
总结
  • 借助局部线性回归模型 Or 非线性(加入平方、三次、n次控制)
  • 关键点是h的选择,有自动的代码rdrobust


相关推荐
小杨互联网22 分钟前
如何确保 ChatGPT 不会让你变“傻”?——四个防止认知萎缩的习惯
人工智能·chatgpt
AMiner:AI科研助手29 分钟前
警惕!你和ChatGPT的对话,可能正在制造分布式妄想
人工智能·分布式·算法·chatgpt·deepseek
飞机火车巴雷特1 小时前
【论文阅读】LightThinker: Thinking Step-by-Step Compression (EMNLP 2025)
论文阅读·人工智能·大模型·cot
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | ReCode:解决LLM代码修复“贵又慢”!细粒度检索+真实基准让修复准确率飙升
论文阅读·人工智能·软件工程
万岳科技程序员小金3 小时前
餐饮、跑腿、零售多场景下的同城外卖系统源码扩展方案
人工智能·小程序·软件开发·app开发·同城外卖系统源码·外卖小程序·外卖app开发
桐果云3 小时前
解锁桐果云零代码数据平台能力矩阵——赋能零售行业数字化转型新动能
大数据·人工智能·矩阵·数据挖掘·数据分析·零售
二向箔reverse5 小时前
深度学习中的学习率优化策略详解
人工智能·深度学习·学习
幂简集成5 小时前
基于 GPT-OSS 的在线编程课 AI 助教追问式对话 API 开发全记录
人工智能·gpt·gpt-oss
AI浩5 小时前
【面试题】介绍一下BERT和GPT的训练方式区别?
人工智能·gpt·bert
Ronin-Lotus5 小时前
深度学习篇---SENet网络结构
人工智能·深度学习