SDXL-Lightning容器构建指南

一、介绍

SDXL-Lightning 项目是由字节跳动开发的一个创新性的 AI 图像生成项目,该项目通过采用全新的蒸馏战略,优化了扩散模型,实现了从文字到高清图像的快速、高质量生成。

1. 项目背景与特点

  • 背景 :随着 AI 绘画技术的不断发展,图像生成的质量和速度成为了重要的研究方向。SDXL-Lightning 项目正是字节跳动在这一领域的重要尝试。
  • 特点
    • 快速生成 :SDXL-Lightning 能够在极短的时间内生成高质量的图像,相较于传统方法,其出图速度有了显著提升。
    • 高质量 :项目通过结合渐进式和对抗式蒸馏方法,不仅保证了生成图像的多样性,还显著提升了图像的质量。
    • 多样化 :生成的图像覆盖了广泛的图像模式,能够满足不同用户的需求。

2. 技术原理

  • 扩散模型优化 :SDXL-Lightning 项目采用了结合渐进式和对抗式蒸馏的扩散蒸馏方法,对原有的扩散模型进行了优化。
    • 渐进式蒸馏 :保留了原模型的图像风格和种类。
    • 对抗式蒸馏 :用于提升图像生成的质量。
  • 模型选择 :项目提供了多种步数的蒸馏模型,包括 1 步、2 步、4 步和 8 步等,用户可以根据需求选择合适的模型进行图像生成。

3. 应用与效果

  • 应用范围 :SDXL-Lightning 项目可以广泛应用于文生图、图生图、局部修复等多种工作流程中。
  • 生成效果
    • 在 2-8 步之间,SDXL-Lightning 的生成效果都非常不错,特别是在 8 步时,其生成图像的质量相对更加稳定,甚至可以与 SDXL 模型 32 步的生成效果相媲美。
    • 即使在 4 步条件下,SDXL-Lightning 的图像质量和风格多样性也超过 Turbo 和 LCM 模型。

4. 项目资源

秒级文生图 · 创空间 (modelscope.cn)

二、容器构建说明

建议使用RTX3090+24G及以上显卡,RTX3060+12G显卡会爆显存

1. 安装 miniconda

进入 Anaconda 官网:

Miniconda --- Anaconda 文档

找到快速命令行安装,选择 Linux 系统,复制代码进入终端进行安装。

等待安装完成。

2. 安装并更新基础命令,让后续使用更快捷: unzip、lsof、git、git-lfs

复制代码
apt-get update
apt-get install -y unzip
apt-get install -y lsof
apt-get install -y git
apt-get install -y git-lfs

3. 克隆项目仓库,并打开文件

复制代码
git clone https://www.modelscope.cn/studios/ByteDance/SDXL-Lightning.git
cd SDXL-Lightning

4. 创建 python 为 3.11版本的虚拟环境,名称为SDXL

复制代码
conda create -n SDXL python=3.11

5. 激活虚拟环境SDXL

复制代码
conda activate SDXL

6. 通过 pip 安装所需的 torch 环境(国内镜像源快一些,以下使用了清华源)

复制代码
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121 -i https://pypi.tuna.tsinghua.edu.cn/simple

7. 安装项目依赖文件及相应包

为了安装速度更快可以将 pip 进行永久换源

复制代码
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install -r requirements.txt
pip install gradio
pip install modelscope
pip install transformers

8. 指定端口,运行 py 文件(运行项目,首次运行会自动下载模型参数,需要保证网络通畅)

复制代码
export GRADIO_SERVER_NAME=0.0.0.0
export GRADIO_SERVER_PORT=8080
python app.py

所需时间可能较长,需要耐心等待

出现以下界面即为运行成功

三、网页演示

运行成功后获取访问链接,即可进入 webUI 界面(注意:在进入页面第一次运行时会自动下载蒸馏模型,下载完成即可生成结果):

相关推荐
救救孩子把1 分钟前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习
yzx9910136 分钟前
接口协议全解析:从HTTP到gRPC,如何选择适合你的通信方案?
网络·人工智能·网络协议·flask·pygame
sali-tec11 分钟前
C# 基于halcon的视觉工作流-章34-环状测量
开发语言·图像处理·算法·计算机视觉·c#
只说证事1 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@1 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬1 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者1 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊1211 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者1 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能1 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉