Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library

python 复制代码
import torch

# supports:
## image data with torchvision
## audio data with torchaudio
## text data with torchtext

1.2、Tensors: the building blocks of networks in PyTorch

1.2.1、Load from list

python 复制代码
import torch

lst = [[1,2,3], [4,5,6]]
tensor = torch.tensor(lst)

1.2.2、Load from NumPy array

python 复制代码
np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)

1.3、Creating our first neural network

1.3.1、A basic, two-layer network with no hidden layers

python 复制代码
import torch.nn as nn

# Create input_tensor with three features
input_tensor = torch.tensor([0.3471, 0.4547, -0.2356])

# Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2

# Pass input through linear layer
output = linear_layer(input_tensor)



# Show the output
print(output)

# Each linear layer has a .weight and .bias property
linear_layer.weight
linear_layer.bias
  • Networks with only linear layers are called fully connected networks.

1.3.2、Stacking layers with nn.Sequential()

python 复制代码
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10,18),
    nn.Linear(18,20),
    nn.Linear(20, 5),
)

1.4、Discovering activation functions

  • Activation functions add non-linearity to the network.

  • A model can learn more complex relationships with non-linearity.

  • Two-class classification: Sigmoid function demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[6.0]])
    sigmoid = nn.Sigmoid()
    output = sigmoid(input_tensor)
    
    # tensor([[0.9975]])
  • Application for Sigmoid function:

    python 复制代码
    model = nn.Sequential(
        nn.Linear(6,4),
        nn.Linear(4,1),
        nn.Sigmoid()
    )
  • Multi-class classification: Softmax demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[4.3, 6.1, 2.3]])
    
    # dim=-1 indicates softmax is applied to the input tensor's last dimension
    # nn.Softmax() can be used as last step in nn.Sequential()
    probabilities = nn.Softmax(dim=-1)
    output_tensor = probabilities(input_tensor)
    
    print(output_tensor)
    
    # tensor([[0.1392, 0.8420, 0.0188]])

2、Training Our First Neural Network with PyTorch

2.1、Running a forward pass

2.1.1、Forward pass

  • Input data is passed forward or propagated through a network.
  • Coputations performed at each layer.
  • Outputs of each layer passed to each subsequent layer.
  • Output of final layer: "prediction".
  • Used for both training and prediction.
  • Some possible outputs:

2.1.2、Backward pass

2.1.3、Binary classification: forward pass

2.1.4、Multi-class classification: forward pass

2.1.5、Regression: forward pass

2.2、Using loss functions to assess model predictions

2.2.1、Why we need a loss function?

  • Give feedback to model during training.
  • Take in model prediction and ground truth .
  • Output a float.

2.2.2、One-hot encoding concepts

python 复制代码
import torch.nn.functional as F

F.one_hot(torch.tensor(0), num_classes = 3)
# tensor([1,0,0]) --- first class

F.one_hot(torch.tensor(1), num_classes = 3)
# tensor([0,1,0]) --- second class

F.one_hot(torch.tensor(2), num_classes = 3)
# tensor([0,0,1]) --- third class

2.2.3、Cross entropy loss in PyTorch

python 复制代码
from torch.nn import CrossEntropyLoss

scores = tensor([[-0.1211, 0.1059]])
one_hot_target = tensor([[1, 0]])

criterion = CrossEntropyLoss()
criterion(scores.double(), one_hot_target.double())
# tensor(0.8131, dtype=torch.float64)

2.2.4、Bringing it all together

2.3、Using derivatives to update model parameters

2.3.1、Minimizing the loss

  • High loss: model prediction is wrong
  • Low loss: model prediction is correct

2.3.2、Connecting derivatives and model training

2.3.3、Backpropagation concepts

2.3.4、Gradient descent

2.4、Writing our first training loop

2.4.1、Training a neural network

2.4.2、Mean Squared Error (MSE) Loss

2.4.3、Before the training loop

2.4.4、The training loop

3、Neural Network Architecture and Hyperparameters

3.1、Discovering activation functions between layers

3.1.1、Limitations of the sigmoid and softmax function

3.1.2、Introducing ReLU

3.1.3、Introducing Leaky ReLU

3.2、A deeper dive into neural network architecture

3.2.1、Counting the number of parameters

3.3、Learning rate and momentum

3.4、Layer initialization and transfer learning

3.4.1、Layer initialization

3.4.2、Transfer learning and fine tuning

4、Evaluating and Improving Models

4.1、A deeper dive into loading data

4.1.1、Recalling TensorDataset

4.1.2、Recalling DataLoader

4.2、Evaluating model performance

4.2.1、Model evaluation metrics

4.2.2、Calculating training loss

4.2.3、Calculating validation loss

4.2.4、Calculating accuracy with torchmetrics

4.3、Fighting overfitting

4.4、Improving model performance

  • Overfit the training set
  • Reduce overfitting
  • Fine-tune the hyperparameters
相关推荐
爱吃泡芙的小白白几秒前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops
山居秋暝LS3 分钟前
Padim模型参数
人工智能·机器学习
小徐xxx8 分钟前
Softmax回归(分类问题)学习记录
深度学习·分类·回归·softmax·学习记录
藦卡机器人10 分钟前
国产分拣机器人品牌有哪一些做的比较好的推荐?
人工智能
GJGCY14 分钟前
2026主流智能体平台技术路线差异,各大平台稳定性与集成能力对比
人工智能·经验分享·ai·智能体
橙露20 分钟前
视觉检测中的数字光纤放大器的核心参数和调整
人工智能·计算机视觉·视觉检测
Rorsion25 分钟前
机器学习过程(从机器学习到深度学习)
人工智能·深度学习·机器学习
JicasdC123asd25 分钟前
【工业检测】基于YOLO13-C3k2-EIEM的铸造缺陷检测与分类系统_1
人工智能·算法·分类
咚咚王者26 分钟前
人工智能之核心技术 深度学习 第十章 模型部署基础
人工智能·深度学习
ydl112826 分钟前
深度学习优化器详解:指数加权平均EWA、动量梯度下降Momentum、均方根传递RMSprop、Adam 从原理到实操
人工智能·深度学习