Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library

python 复制代码
import torch

# supports:
## image data with torchvision
## audio data with torchaudio
## text data with torchtext

1.2、Tensors: the building blocks of networks in PyTorch

1.2.1、Load from list

python 复制代码
import torch

lst = [[1,2,3], [4,5,6]]
tensor = torch.tensor(lst)

1.2.2、Load from NumPy array

python 复制代码
np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)

1.3、Creating our first neural network

1.3.1、A basic, two-layer network with no hidden layers

python 复制代码
import torch.nn as nn

# Create input_tensor with three features
input_tensor = torch.tensor([0.3471, 0.4547, -0.2356])

# Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2

# Pass input through linear layer
output = linear_layer(input_tensor)



# Show the output
print(output)

# Each linear layer has a .weight and .bias property
linear_layer.weight
linear_layer.bias
  • Networks with only linear layers are called fully connected networks.

1.3.2、Stacking layers with nn.Sequential()

python 复制代码
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10,18),
    nn.Linear(18,20),
    nn.Linear(20, 5),
)

1.4、Discovering activation functions

  • Activation functions add non-linearity to the network.

  • A model can learn more complex relationships with non-linearity.

  • Two-class classification: Sigmoid function demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[6.0]])
    sigmoid = nn.Sigmoid()
    output = sigmoid(input_tensor)
    
    # tensor([[0.9975]])
  • Application for Sigmoid function:

    python 复制代码
    model = nn.Sequential(
        nn.Linear(6,4),
        nn.Linear(4,1),
        nn.Sigmoid()
    )
  • Multi-class classification: Softmax demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[4.3, 6.1, 2.3]])
    
    # dim=-1 indicates softmax is applied to the input tensor's last dimension
    # nn.Softmax() can be used as last step in nn.Sequential()
    probabilities = nn.Softmax(dim=-1)
    output_tensor = probabilities(input_tensor)
    
    print(output_tensor)
    
    # tensor([[0.1392, 0.8420, 0.0188]])

2、Training Our First Neural Network with PyTorch

2.1、Running a forward pass

2.1.1、Forward pass

  • Input data is passed forward or propagated through a network.
  • Coputations performed at each layer.
  • Outputs of each layer passed to each subsequent layer.
  • Output of final layer: "prediction".
  • Used for both training and prediction.
  • Some possible outputs:

2.1.2、Backward pass

2.1.3、Binary classification: forward pass

2.1.4、Multi-class classification: forward pass

2.1.5、Regression: forward pass

2.2、Using loss functions to assess model predictions

2.2.1、Why we need a loss function?

  • Give feedback to model during training.
  • Take in model prediction and ground truth .
  • Output a float.

2.2.2、One-hot encoding concepts

python 复制代码
import torch.nn.functional as F

F.one_hot(torch.tensor(0), num_classes = 3)
# tensor([1,0,0]) --- first class

F.one_hot(torch.tensor(1), num_classes = 3)
# tensor([0,1,0]) --- second class

F.one_hot(torch.tensor(2), num_classes = 3)
# tensor([0,0,1]) --- third class

2.2.3、Cross entropy loss in PyTorch

python 复制代码
from torch.nn import CrossEntropyLoss

scores = tensor([[-0.1211, 0.1059]])
one_hot_target = tensor([[1, 0]])

criterion = CrossEntropyLoss()
criterion(scores.double(), one_hot_target.double())
# tensor(0.8131, dtype=torch.float64)

2.2.4、Bringing it all together

2.3、Using derivatives to update model parameters

2.3.1、Minimizing the loss

  • High loss: model prediction is wrong
  • Low loss: model prediction is correct

2.3.2、Connecting derivatives and model training

2.3.3、Backpropagation concepts

2.3.4、Gradient descent

2.4、Writing our first training loop

2.4.1、Training a neural network

2.4.2、Mean Squared Error (MSE) Loss

2.4.3、Before the training loop

2.4.4、The training loop

3、Neural Network Architecture and Hyperparameters

3.1、Discovering activation functions between layers

3.1.1、Limitations of the sigmoid and softmax function

3.1.2、Introducing ReLU

3.1.3、Introducing Leaky ReLU

3.2、A deeper dive into neural network architecture

3.2.1、Counting the number of parameters

3.3、Learning rate and momentum

3.4、Layer initialization and transfer learning

3.4.1、Layer initialization

3.4.2、Transfer learning and fine tuning

4、Evaluating and Improving Models

4.1、A deeper dive into loading data

4.1.1、Recalling TensorDataset

4.1.2、Recalling DataLoader

4.2、Evaluating model performance

4.2.1、Model evaluation metrics

4.2.2、Calculating training loss

4.2.3、Calculating validation loss

4.2.4、Calculating accuracy with torchmetrics

4.3、Fighting overfitting

4.4、Improving model performance

  • Overfit the training set
  • Reduce overfitting
  • Fine-tune the hyperparameters
相关推荐
得一录12 分钟前
AI面试·简单题
人工智能·面试·职场和发展
minhuan27 分钟前
大模型应用:轻量化视觉语言模型(VLM):基于Qwen2-VL多模态模型实践.87
人工智能·语言模型·自然语言处理·qwen2-vl·轻量化vlm模型
MaoziShan35 分钟前
CMU Subword Modeling | 08 Non-Concatenative Morphological Processes
人工智能·机器学习·语言模型·自然语言处理
小程故事多_801 小时前
RAG,基于字号频率的内容切分算法,非常强
人工智能·算法·aigc
IT 行者1 小时前
OpenClaw 浏览器自动化测试的那些坑(一):Linux Snap 版本的 Chromium 无法使用托管模式
linux·运维·服务器·人工智能
肾透侧视攻城狮1 小时前
《掌握 tf.data API:从 Dataset 创建、map/batch/shuffle 操作到预取/缓存优化的完整实战》
人工智能·深度学习·tensorflow·tf.data api·dataset 对象·map/batch/shuff·预取/并行化/缓存机制
大模型任我行1 小时前
百度:动态偏好选择提升LLM对齐稳定性
人工智能·语言模型·自然语言处理·论文笔记
A尘埃1 小时前
深度学习框架:Keras
人工智能·深度学习·keras
回眸&啤酒鸭1 小时前
【回眸】AI新鲜事(五)——2026按照自己的理想型培养自己
人工智能
AI周红伟1 小时前
周红伟:智能体构建实操:OpenClaw + Agent Skills + Seedance + RAG 案例实操
大数据·人工智能·大模型·智能体