Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library

python 复制代码
import torch

# supports:
## image data with torchvision
## audio data with torchaudio
## text data with torchtext

1.2、Tensors: the building blocks of networks in PyTorch

1.2.1、Load from list

python 复制代码
import torch

lst = [[1,2,3], [4,5,6]]
tensor = torch.tensor(lst)

1.2.2、Load from NumPy array

python 复制代码
np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)

1.3、Creating our first neural network

1.3.1、A basic, two-layer network with no hidden layers

python 复制代码
import torch.nn as nn

# Create input_tensor with three features
input_tensor = torch.tensor([0.3471, 0.4547, -0.2356])

# Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2

# Pass input through linear layer
output = linear_layer(input_tensor)



# Show the output
print(output)

# Each linear layer has a .weight and .bias property
linear_layer.weight
linear_layer.bias
  • Networks with only linear layers are called fully connected networks.

1.3.2、Stacking layers with nn.Sequential()

python 复制代码
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10,18),
    nn.Linear(18,20),
    nn.Linear(20, 5),
)

1.4、Discovering activation functions

  • Activation functions add non-linearity to the network.

  • A model can learn more complex relationships with non-linearity.

  • Two-class classification: Sigmoid function demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[6.0]])
    sigmoid = nn.Sigmoid()
    output = sigmoid(input_tensor)
    
    # tensor([[0.9975]])
  • Application for Sigmoid function:

    python 复制代码
    model = nn.Sequential(
        nn.Linear(6,4),
        nn.Linear(4,1),
        nn.Sigmoid()
    )
  • Multi-class classification: Softmax demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[4.3, 6.1, 2.3]])
    
    # dim=-1 indicates softmax is applied to the input tensor's last dimension
    # nn.Softmax() can be used as last step in nn.Sequential()
    probabilities = nn.Softmax(dim=-1)
    output_tensor = probabilities(input_tensor)
    
    print(output_tensor)
    
    # tensor([[0.1392, 0.8420, 0.0188]])

2、Training Our First Neural Network with PyTorch

2.1、Running a forward pass

2.1.1、Forward pass

  • Input data is passed forward or propagated through a network.
  • Coputations performed at each layer.
  • Outputs of each layer passed to each subsequent layer.
  • Output of final layer: "prediction".
  • Used for both training and prediction.
  • Some possible outputs:

2.1.2、Backward pass

2.1.3、Binary classification: forward pass

2.1.4、Multi-class classification: forward pass

2.1.5、Regression: forward pass

2.2、Using loss functions to assess model predictions

2.2.1、Why we need a loss function?

  • Give feedback to model during training.
  • Take in model prediction and ground truth .
  • Output a float.

2.2.2、One-hot encoding concepts

python 复制代码
import torch.nn.functional as F

F.one_hot(torch.tensor(0), num_classes = 3)
# tensor([1,0,0]) --- first class

F.one_hot(torch.tensor(1), num_classes = 3)
# tensor([0,1,0]) --- second class

F.one_hot(torch.tensor(2), num_classes = 3)
# tensor([0,0,1]) --- third class

2.2.3、Cross entropy loss in PyTorch

python 复制代码
from torch.nn import CrossEntropyLoss

scores = tensor([[-0.1211, 0.1059]])
one_hot_target = tensor([[1, 0]])

criterion = CrossEntropyLoss()
criterion(scores.double(), one_hot_target.double())
# tensor(0.8131, dtype=torch.float64)

2.2.4、Bringing it all together

2.3、Using derivatives to update model parameters

2.3.1、Minimizing the loss

  • High loss: model prediction is wrong
  • Low loss: model prediction is correct

2.3.2、Connecting derivatives and model training

2.3.3、Backpropagation concepts

2.3.4、Gradient descent

2.4、Writing our first training loop

2.4.1、Training a neural network

2.4.2、Mean Squared Error (MSE) Loss

2.4.3、Before the training loop

2.4.4、The training loop

3、Neural Network Architecture and Hyperparameters

3.1、Discovering activation functions between layers

3.1.1、Limitations of the sigmoid and softmax function

3.1.2、Introducing ReLU

3.1.3、Introducing Leaky ReLU

3.2、A deeper dive into neural network architecture

3.2.1、Counting the number of parameters

3.3、Learning rate and momentum

3.4、Layer initialization and transfer learning

3.4.1、Layer initialization

3.4.2、Transfer learning and fine tuning

4、Evaluating and Improving Models

4.1、A deeper dive into loading data

4.1.1、Recalling TensorDataset

4.1.2、Recalling DataLoader

4.2、Evaluating model performance

4.2.1、Model evaluation metrics

4.2.2、Calculating training loss

4.2.3、Calculating validation loss

4.2.4、Calculating accuracy with torchmetrics

4.3、Fighting overfitting

4.4、Improving model performance

  • Overfit the training set
  • Reduce overfitting
  • Fine-tune the hyperparameters
相关推荐
stark张宇2 分钟前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent
IT_陈寒7 分钟前
Redis性能翻倍的5个冷门技巧,90%开发者都不知道的深度优化方案
前端·人工智能·后端
小脉传媒GEO12 分钟前
GEO优化数据统计系统DeepAnaX系统详细介绍:您的AI生态数据可视化与智能决策中枢
人工智能·信息可视化
roman_日积跬步-终至千里14 分钟前
【人工智能原理(1)】要点总结:从搜索、学习到推理的智能之路
人工智能·学习
云闲不收15 分钟前
AI编程系列——mcp与skill
人工智能·ai编程
aitoolhub17 分钟前
人脸识别技术:从传统方法到深度学习的演进路径
人工智能·深度学习
Aaron158821 分钟前
RFSOC+VU13P在无线信道模拟中的技术应用分析
数据结构·人工智能·算法·fpga开发·硬件架构·硬件工程·射频工程
高洁0124 分钟前
一文了解图神经网络
人工智能·python·深度学习·机器学习·transformer
数据猿25 分钟前
【金猿CIO展】莱商银行信息科技部总经理张勇:AI Infra与Data Agent驱动金融数据价值新十年
人工智能·金融
verse_armour27 分钟前
【深度学习】Grand Challenge、zenodo、huggingface数据集下载
人工智能·深度学习·huggingface·zenodo·数据集下载