Introduction to Deep Learning with PyTorch

1、Introduction to PyTorch, a Deep Learning Library

python 复制代码
import torch

# supports:
## image data with torchvision
## audio data with torchaudio
## text data with torchtext

1.2、Tensors: the building blocks of networks in PyTorch

1.2.1、Load from list

python 复制代码
import torch

lst = [[1,2,3], [4,5,6]]
tensor = torch.tensor(lst)

1.2.2、Load from NumPy array

python 复制代码
np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)

1.3、Creating our first neural network

1.3.1、A basic, two-layer network with no hidden layers

python 复制代码
import torch.nn as nn

# Create input_tensor with three features
input_tensor = torch.tensor([0.3471, 0.4547, -0.2356])

# Define our first linear layer
linear_layer = nn.Linear(in_features=3, out_features=2

# Pass input through linear layer
output = linear_layer(input_tensor)



# Show the output
print(output)

# Each linear layer has a .weight and .bias property
linear_layer.weight
linear_layer.bias
  • Networks with only linear layers are called fully connected networks.

1.3.2、Stacking layers with nn.Sequential()

python 复制代码
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10,18),
    nn.Linear(18,20),
    nn.Linear(20, 5),
)

1.4、Discovering activation functions

  • Activation functions add non-linearity to the network.

  • A model can learn more complex relationships with non-linearity.

  • Two-class classification: Sigmoid function demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[6.0]])
    sigmoid = nn.Sigmoid()
    output = sigmoid(input_tensor)
    
    # tensor([[0.9975]])
  • Application for Sigmoid function:

    python 复制代码
    model = nn.Sequential(
        nn.Linear(6,4),
        nn.Linear(4,1),
        nn.Sigmoid()
    )
  • Multi-class classification: Softmax demo:

    python 复制代码
    import torch
    import torch.nn as nn
    
    input_tensor = torch.tensor([[4.3, 6.1, 2.3]])
    
    # dim=-1 indicates softmax is applied to the input tensor's last dimension
    # nn.Softmax() can be used as last step in nn.Sequential()
    probabilities = nn.Softmax(dim=-1)
    output_tensor = probabilities(input_tensor)
    
    print(output_tensor)
    
    # tensor([[0.1392, 0.8420, 0.0188]])

2、Training Our First Neural Network with PyTorch

2.1、Running a forward pass

2.1.1、Forward pass

  • Input data is passed forward or propagated through a network.
  • Coputations performed at each layer.
  • Outputs of each layer passed to each subsequent layer.
  • Output of final layer: "prediction".
  • Used for both training and prediction.
  • Some possible outputs:

2.1.2、Backward pass

2.1.3、Binary classification: forward pass

2.1.4、Multi-class classification: forward pass

2.1.5、Regression: forward pass

2.2、Using loss functions to assess model predictions

2.2.1、Why we need a loss function?

  • Give feedback to model during training.
  • Take in model prediction and ground truth .
  • Output a float.

2.2.2、One-hot encoding concepts

python 复制代码
import torch.nn.functional as F

F.one_hot(torch.tensor(0), num_classes = 3)
# tensor([1,0,0]) --- first class

F.one_hot(torch.tensor(1), num_classes = 3)
# tensor([0,1,0]) --- second class

F.one_hot(torch.tensor(2), num_classes = 3)
# tensor([0,0,1]) --- third class

2.2.3、Cross entropy loss in PyTorch

python 复制代码
from torch.nn import CrossEntropyLoss

scores = tensor([[-0.1211, 0.1059]])
one_hot_target = tensor([[1, 0]])

criterion = CrossEntropyLoss()
criterion(scores.double(), one_hot_target.double())
# tensor(0.8131, dtype=torch.float64)

2.2.4、Bringing it all together

2.3、Using derivatives to update model parameters

2.3.1、Minimizing the loss

  • High loss: model prediction is wrong
  • Low loss: model prediction is correct

2.3.2、Connecting derivatives and model training

2.3.3、Backpropagation concepts

2.3.4、Gradient descent

2.4、Writing our first training loop

2.4.1、Training a neural network

2.4.2、Mean Squared Error (MSE) Loss

2.4.3、Before the training loop

2.4.4、The training loop

3、Neural Network Architecture and Hyperparameters

3.1、Discovering activation functions between layers

3.1.1、Limitations of the sigmoid and softmax function

3.1.2、Introducing ReLU

3.1.3、Introducing Leaky ReLU

3.2、A deeper dive into neural network architecture

3.2.1、Counting the number of parameters

3.3、Learning rate and momentum

3.4、Layer initialization and transfer learning

3.4.1、Layer initialization

3.4.2、Transfer learning and fine tuning

4、Evaluating and Improving Models

4.1、A deeper dive into loading data

4.1.1、Recalling TensorDataset

4.1.2、Recalling DataLoader

4.2、Evaluating model performance

4.2.1、Model evaluation metrics

4.2.2、Calculating training loss

4.2.3、Calculating validation loss

4.2.4、Calculating accuracy with torchmetrics

4.3、Fighting overfitting

4.4、Improving model performance

  • Overfit the training set
  • Reduce overfitting
  • Fine-tune the hyperparameters
相关推荐
AKAMAI12 分钟前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿39 分钟前
机器学习|大模型为什么会出现"幻觉"?
人工智能
JoannaJuanCV1 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer
飞哥数智坊1 小时前
Qoder vs CodeBuddy,刚起步就收费,值吗?
人工智能·ai编程
强盛小灵通专卖员1 小时前
闪电科创,深度学习辅导
人工智能·sci·小论文·大论文·延毕
通街市密人有1 小时前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
大千AI助手1 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
蚂蚁RichLab前端团队1 小时前
🚀🚀🚀 RichLab - 花呗前端团队招贤纳士 - 【转岗/内推/社招】
前端·javascript·人工智能
智数研析社1 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
救救孩子把1 小时前
2-机器学习与大模型开发数学教程-第0章 预备知识-0-2 数列与级数(收敛性、幂级数)
人工智能·数学·机器学习