paddle模型转onnx介绍(以utc-mini为例)

1、paddle到onnx转换命令

python 复制代码
paddle2onnx --model_dir /opt/utc/models/checkpoint_utc-mini/ --model_filename model.pdmodel --params_filename model.pdiparams --save_file /opt/utc/models/checkpoint_utc-mini/onnx/model.onnx --enable_dev_version True --opset_version 13 --enable_onnx_checker True

2、测试验证

python 复制代码
# -*- coding: utf-8 -*-
"""
    paddle -> onnx
"""
import os

from paddle.static import InputSpec

import paddle2onnx


def func_onnx_test_valid(onnx_model_path):
    """ (1) 检查 ONNX 模型的有效性
        可以使用如下脚本验证导出的 ONNX 模型是否合理,包括检查模型的版本、图的结构、节点及其输入和输出。
        如下脚本的输出为 None 则表示模型转换正确。
    """
    # 导入 ONNX 库
    import onnx

    # 载入 ONNX 模型
    onnx_model = onnx.load(onnx_model_path)

    # 使用 ONNX 库检查 ONNX 模型是否合理
    check = onnx.checker.check_model(onnx_model)

    # 打印检查结果
    print('check: ', check)

    pass


def func_onnx_test_match(onnx_model_path, paddle_model_path):
    """ 验证模型是否匹配
        验证原始的飞桨模型和导出的 ONNX 模型是否有相同的计算结果。
    """
    # 导入所需的库
    import numpy as np
    import onnxruntime
    import paddle

    def input_generate():
        # 准备输入数据
        batch_size = 1
        max_seq_length = 128  # 假设最大序列长度为 128

        # 生成示例输入数据
        input_ids = np.random.randint(0, 10000, (batch_size, max_seq_length)).astype('int64')
        token_type_ids = np.zeros((batch_size, max_seq_length), dtype='int64')
        position_ids = np.arange(max_seq_length).reshape(1, -1).repeat(batch_size, axis=0).astype('int64')
        attention_mask = np.ones((batch_size, 1, max_seq_length, max_seq_length), dtype='float32')
        omask_positions = np.array([[10, 20]]).astype('int64')  # 假设 omask_positions 为 [10, 20]
        cls_positions = np.array([0]).astype('int64')  # 假设 cls_positions 为 [0]

        # 准备输入字典
        ort_inputs = {
            'input_ids': input_ids,
            'token_type_ids': token_type_ids,
            'position_ids': position_ids,
            'attention_mask': attention_mask,
            'omask_positions': omask_positions,
            'cls_positions': cls_positions
        }

        return ort_inputs

    print("------------------------ ONNX -----------------------------")
    # predict by ONNXRuntime
    ort_sess = onnxruntime.InferenceSession(onnx_model_path, providers=['CPUExecutionProvider'])

    # 获取输入和输出名称
    input_names = [input.name for input in ort_sess.get_inputs()]
    output_names = [output.name for output in ort_sess.get_outputs()]
    # 打印输入和输出名称
    print("Input names:", input_names)
    print("Output names:", output_names)

    # 获取输入数据
    ort_inputs = input_generate()

    # 运行模型
    ort_outs = ort_sess.run(None, ort_inputs)
    print("ONNX Outputs: \n", ort_outs)
    print("Exported model has been predicted by ONNXRuntime!")
    print("------------------------ ONNX -----------------------------")

    pass


if __name__ == '__main__':

    # paddle 模型保存目录及文件路径
    model_dir_paddle = '/opt/utc/models/checkpoint_utc-mini/'

    # onnx 保存目录及文件路径
    model_dir_onnx = model_dir_paddle + "onnx/"
    os.makedirs(model_dir_onnx, exist_ok=True)
    onnx_model_path = model_dir_onnx + 'model.onnx'

    # (1) 检查 ONNX 模型的有效性
    func_onnx_test_valid(onnx_model_path)
    # (2) 验证模型是否匹配
    func_onnx_test_match(onnx_model_path)

    print("done.")
    pass
相关推荐
Blossom.11834 分钟前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn2 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer2 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic2 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿3 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天3 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU3 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec3 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子3 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study3 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉