研1日记9

1.理解conv1d和conv2d

a. 1和2处理的数据不同,1维数据和图像

b. 例如x输入形状为(32,19,512)时,卷积公式是针对512的,而19应该变换为参数中指定的输出通道。

2."SE块"(Squeeze-and-Excitation Block)它可以帮助模型自动学习不同特征的重要性,然后增强有用的特征,抑制不那么重要的特征。SE块的工作流程就是:首先通过自适应平均池化"挤压"出全局信息,然后通过两次一维卷积和ReLU激活函数学习不同特征的重要性,最后通过Sigmoid函数将这些重要性转换为0到1之间的权重。这些权重随后可以用于对原始特征图进行重新标定,即根据权重增强或抑制不同的特征。

3.Pointwise Convolution(点卷积)

点卷积,也称为1x1卷积,是一种特殊的卷积操作,其中卷积核的大小为1x1(对于二维卷积是1x1x输入通道数,对于一维卷积是1x输入通道数)。这种卷积操作不会改变输入数据在空间维度(对于一维数据是长度,对于二维数据是高度和宽度)上的大小,但它可以改变数据的深度(即通道数),常用于构建更复杂的网络结构。

  1. 位置编码

pos:位置,0~seq_len-1

i: 0~embedding/2 embedding = dmodel

  1. zip (),对三维数组迭代时:

for x in zip(X):,X形状为(3,4,5),则循环3次,x的形状是(4,5)

  1. torch.stack 把多个2维的张量合成一个3维的张量

7.如果你有一个形状为(3, 4, 5)的tensor,并且你调用.sum(dim=0),那么你会沿着第一个维度(大小为3的那个维度)求和,结果是一个形状为(4, 5)的tensor,因为第一个维度被求和掉了。

8.torch.max ,0是行,1是列

  1. loss 和train_loss 的计算
复制代码

9. 当你在使用val_loader(或任何用于验证/测试的数据加载器)时,你会使用model.train()时训练好的参数。但是,重要的是要注意,尽管你使用的是训练好的参数,但在进行验证或测试时,你应该将模型设置为评估模式(使用model.eval()),而不是训练模式。

相关推荐
杜子不疼.1 分钟前
基于CANN GE图引擎的深度学习模型编译与优化技术
人工智能·深度学习
L、2185 分钟前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构
chaser&upper11 分钟前
预见未来:在 AtomGit 解码 CANN ops-nn 的投机采样加速
人工智能·深度学习·神经网络
松☆15 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
结局无敌21 分钟前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_4665252921 分钟前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
慢半拍iii23 分钟前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann
机器懒得学习27 分钟前
智能股票分析系统
python·深度学习·金融
晟诺数字人28 分钟前
2026年海外直播变革:数字人如何改变游戏规则
大数据·人工智能·产品运营
蛋王派28 分钟前
DeepSeek-OCR-v2 模型解析和部署应用
人工智能·ocr