- Agent :
- 概念:在人工智能中,Agent 通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。
- 作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如 RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent 可以根据用户的问题,规划出需要查询商品价格、进行计算等步骤,并调用相应的工具(如 RAG 工具去检索商品价格信息,调用计算器进行计算),最后基于结果生成客服文案来回答用户。
- RAG(Retrieval-Augmented Generation) :
- 概念:是一种结合了检索和生成的自然语言处理技术。它先从大型文档集合中检索相关信息,然后将这些信息整合到生成的文本中。RAG 模型通常包含检索器(用于从文档库中检索相关信息)和生成器(用于生成最终的文本输出)两个主要部分。
- 作用:主要用于提升大模型回答问题的准确性。传统大模型可能会凭空 "编造" 答案,而 RAG 技术通过检索相关文档或数据源(如数据库或网络资源),找到最相关的片段作为证据,再利用这些证据辅助大模型生成精确的答案,能有效改善 "幻觉" 问题,在问答、摘要生成、内容创作等任务中表现出色。
- LangChain :
- 概念:是一个开源的自然语言处理框架,旨在通过模块化的方式构建复杂的语言处理应用。它提供了一套工具和接口,让开发者能轻松地集成和扩展不同的语言处理功能。
- 作用:允许开发者构建端到端的自然语言处理流程,包括数据预处理、模型训练、推理和后处理等。在涉及 RAG 技术应用时,LangChain 可以帮助开发者高效地组织、检索和对接多种数据源,比如将文本数据进行向量化存储,并与大模型进行无缝交互。例如,在构建客服问答产品时,LangChain 可作为基础设施平台,提供构建此类系统的工具和服务,开发者能使用它来对接检索服务、商品价格知识库、售后服务 API 接口以及大语言模型等。
Agent、RAG、LangChain的概念及作用
北极冰雨2024-09-13 10:11
相关推荐
m0_7513363937 分钟前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。郭庆汝4 小时前
pytorch、torchvision与python版本对应关系小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代叶子爱分享7 小时前
计算机视觉与图像处理的关系鱼摆摆拜拜7 小时前
第 3 章:神经网络如何学习一只鹿鹿鹿7 小时前
信息化项目验收,软件工程评审和检查表单张较瘦_8 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术