- Agent :
- 概念:在人工智能中,Agent 通常指的是能够执行任务或做出决策的实体,可以是简单的程序,也可以是复杂的系统,如自动化客服助手、推荐系统等,甚至可以是软件代理、机器人或虚拟助手等各种形式。
- 作用:它能利用内置的大语言模型来做出规划,决定执行哪些步骤,以及每个步骤需要调用哪些工具(如 RAG),之后调用相应的工具,最终完成任务。例如,在客服问答场景中,Agent 可以根据用户的问题,规划出需要查询商品价格、进行计算等步骤,并调用相应的工具(如 RAG 工具去检索商品价格信息,调用计算器进行计算),最后基于结果生成客服文案来回答用户。
- RAG(Retrieval-Augmented Generation) :
- 概念:是一种结合了检索和生成的自然语言处理技术。它先从大型文档集合中检索相关信息,然后将这些信息整合到生成的文本中。RAG 模型通常包含检索器(用于从文档库中检索相关信息)和生成器(用于生成最终的文本输出)两个主要部分。
- 作用:主要用于提升大模型回答问题的准确性。传统大模型可能会凭空 "编造" 答案,而 RAG 技术通过检索相关文档或数据源(如数据库或网络资源),找到最相关的片段作为证据,再利用这些证据辅助大模型生成精确的答案,能有效改善 "幻觉" 问题,在问答、摘要生成、内容创作等任务中表现出色。
- LangChain :
- 概念:是一个开源的自然语言处理框架,旨在通过模块化的方式构建复杂的语言处理应用。它提供了一套工具和接口,让开发者能轻松地集成和扩展不同的语言处理功能。
- 作用:允许开发者构建端到端的自然语言处理流程,包括数据预处理、模型训练、推理和后处理等。在涉及 RAG 技术应用时,LangChain 可以帮助开发者高效地组织、检索和对接多种数据源,比如将文本数据进行向量化存储,并与大模型进行无缝交互。例如,在构建客服问答产品时,LangChain 可作为基础设施平台,提供构建此类系统的工具和服务,开发者能使用它来对接检索服务、商品价格知识库、售后服务 API 接口以及大语言模型等。
Agent、RAG、LangChain的概念及作用
北极冰雨2024-09-13 10:11
相关推荐
985小水博一枚呀33 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法AltmanChan34 分钟前
大语言模型安全威胁985小水博一枚呀38 分钟前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>热爱跑步的恒川5 小时前
【论文复现】基于图卷积网络的轻量化推荐模型