【Petri网导论学习笔记】Petri网导论入门学习(三)

Petri网导论入门学习(三)

  • [Petri 网导论学习笔记(三)](#Petri 网导论学习笔记(三))
        • [定义 1.4](#定义 1.4)
        • [定义 1.5](#定义 1.5)
        • [定义 1.6](#定义 1.6)
        • [定义 1.7](#定义 1.7)

Petri 网导论学习笔记(三)

如需学习转载请注明原作者并附本帖链接!!!
如需学习转载请注明原作者并附本帖链接!!!
如需学习转载请注明原作者并附本帖链接!!!

原创码字不易,觉得不错请一键三连吧

这篇主要是1.1章节的收尾

(ノへ ̄、)

发现网上关于Petri网的学习资源较少,这里分享的是看Petri网导论这本书的笔记(感觉相对于那个视频来说书上写的还是更详细一点,当然视频学习到第三章的笔记也会传上来,后续会主要看这本书来学习Petri网),欢迎大家来一起交流和学习,使用的学习资料是:

Petri网导论 吴哲辉著(主要)

Petri网:模型、理论与应用-清华大学

定义 1.4

设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网。
1 ) N d = ( T , S ; F ) 1)N^{\mathrm{d}}=(T,S;F) 1)Nd=(T,S;F)称为网 N N N的对偶网(dual net) ;
2 ) N − 1 = ( S , T ; F − 1 ) 2)N^{-1}=(S,T;F^{-1}) 2)N−1=(S,T;F−1)称为网 N N N的逆网(inversed net) ,其中 F − 1 = {   ( x , y )   ∣   ( y , x ) ∈ F   } F^{-1}=\{\:(x,y)\:|\:(y,x)\in F\:\} F−1={(x,y)∣(y,x)∈F}

小白也能听懂版:

N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)

ST交换→对偶网

F流关系逆置→逆网

定义 1.5

设 N = ( S , T ; F ) 为一个网。如果 S 1 ⊆ S , T 1 ⊆ T F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \text{设 }N=(S,T;F)\text{ 为一个网。如果}\\S_{1}\subseteq S,\quad T_{1}\subseteq T\\F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F 设 N=(S,T;F) 为一个网。如果S1⊆S,T1⊆TF1=((S1×T1)∪(T1×S1))∩F

则称 N 1 = ( S 1 , T 1 ; F 1 ) 为网 N 的一个子网(subnet)。 \text{则称 }N_1=(S_1,T_1;F_1)\text{ 为网 }N\text{ 的一个子网(subnet)。} 则称 N1=(S1,T1;F1) 为网 N 的一个子网(subnet)。

F F F里的 S → T 和 T → S S→T和T→S S→T和T→S的流关系的子集

注意的是库所子集 S 1 S_1 S1和变迁子集 T 1 T_1 T1给出,子网的有向边集 F 1 F_1 F1就确定了→S和T确定,ST子集所相关的流关系的子集也就确定了

定义 1.6

设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网, S 1 ⊆ S . S_1\subseteq S. S1⊆S.
1 ) N o s ( S l ) 1) N_{\mathrm{os}}( S_{\mathrm{l} }) 1)Nos(Sl) = ( S 1 , T 1 ; F 1 ) ( S_{1}, T_{1}; F_{1}) (S1,T1;F1)称为网 N N N关于库所子集 S 1 S_1 S1的外延子网(outface sub-net) ,当且仅当:
T 1 = ∙ S 1 ∪ S 1 ∙ = ⋃ s ∈ S 1 ( ∙ s ∪ s ∙ ) F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \begin{aligned}&T_{1}=^{\bullet}S_{1}\cup S_{1}^{\bullet}=\bigcup_{s\in S_{1}}(^{\bullet}s\cup s^{\bullet})\\&F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F\end{aligned} T1=∙S1∪S1∙=s∈S1⋃(∙s∪s∙)F1=((S1×T1)∪(T1×S1))∩F

T 1 T_1 T1是 S 1 S_1 S1的外延也可以说是 S 1 S_1 S1中所有 s s s元素的外延

F 1 F_1 F1是 S 1 S_1 S1与其外延 T 1 T_1 T1中的 F F F中的流关系的一部分

所以是包含了 S 1 S_1 S1的前集和后集的变迁与之相关的流关系所以是外延子网

2 ) N i s ( S 1 ) = ( S 1 , T 2 ; F 2 ) 2)N_{\mathrm{is}}( S_{1}) = ( S_{1}, T_{2}; F_{2}) 2)Nis(S1)=(S1,T2;F2)称为网 N N N关于库所子集 S 1 S_1 S1的内连子网( inner-link sub-net) ,当且仅当
T 2 = ∙ S 1 ∩ S 1 ∙ = ( ⋃ s ∈ S 1 ∙ s ) ∩ ( ⋃ s ∈ S 1 s ∙ ) F 2 = ( ( S 1 × T 2 ) ∪ ( T 2 × S 1 ) ) ∩ F T_{2}={}^{\bullet}S_{1}\cap S_{1}^{\bullet}=(\bigcup_{s\in S_{1}}{}^{\bullet}s)\cap(\bigcup_{s\in S_{1}}s^{\bullet})\\F_{2}=((S_{1}\times T_{2})\cup(T_{2}\times S_{1}))\cap F T2=∙S1∩S1∙=(⋃s∈S1∙s)∩(⋃s∈S1s∙)F2=((S1×T2)∪(T2×S1))∩F

注意上面变迁的∪变成了∩!

T 2 T_2 T2只是 S 1 S_1 S1的前集也是后集

F 2 F_2 F2是 S 1 S_1 S1与其外延 T 2 T_2 T2中的 F F F中的流关系的一部分

所以是包含了 S 2 S_2 S2的前集和后集的变迁与之相关的流关系所以是内连子网

定义 1.7

设 N = ( S , T ; F ) N=(S,T;F) N=(S,T;F)为一个网 , T 1 ⊆ T . T_1\subseteq T. T1⊆T.

1 ) N o s ( T 1 ) = ( S 1 , T 1 ; F 1 ) 1)N_{\mathrm{os}}(T_{1})=(S_{1},T_{1};F_{1}) 1)Nos(T1)=(S1,T1;F1)称为网 N N N关于变迁子集 T 1 T_1 T1的外延子网 ,当且仅当
S 1 = ∙ T 1 ∪ T 1 ∙ = ⋃ t ∈ T 1 ( ∙ t ∪ t ∙ ) F 1 = ( ( S 1 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F \begin{aligned}&S_{1}=^{\bullet}T_{1}\cup T_{1}^{\bullet}=\bigcup_{t\in T_{1}}(^{\bullet}t\cup t^{\bullet})\\&F_{1}=((S_{1}\times T_{1})\cup(T_{1}\times S_{1}))\cap F\end{aligned} S1=∙T1∪T1∙=t∈T1⋃(∙t∪t∙)F1=((S1×T1)∪(T1×S1))∩F

与上面的定义类似,只不过上面是以S为中心,1.7以T为核心

2 ) N i s ( T 1 ) = ( S 2 , T 1 ; F 2 ) 2)N_{\mathrm{is}}( T_{1}) = ( S_{2}, T_{1}; F_{2}) 2)Nis(T1)=(S2,T1;F2)称为网 N N N关于变迁子集 T 1 T_1 T1的内连子网 ,当且仅当
S 2 = ∙ T 1 ∩ T 1 ∙ = ( ⋃ t ∈ T 1 ∙ t ) ∩ ( ⋃ t ∈ T 1 t ∙ ) F 2 = ( ( S 2 × T 1 ) ∪ ( T 1 × S 1 ) ) ∩ F S_{2}=^{\bullet}T_{1}\cap T_{1}^{\bullet}=(\bigcup_{t\in T_{1}} {}^{\bullet}t)\cap(\bigcup_{t\in T_{1}}t^{\bullet})\\F_{2}=((S_{2}\times T_{1})\cup(T_{1}\times S_{1}))\cap F S2=∙T1∩T1∙=(t∈T1⋃∙t)∩(t∈T1⋃t∙)F2=((S2×T1)∪(T1×S1))∩F

与上面的定义类似,只不过上面是以S为中心,1.7以T为核心


相关推荐
咚咚王者几秒前
人工智能之核心基础 机器学习 第十一章 无监督学习总结
人工智能·学习·机器学习
代码游侠1 分钟前
学习笔记——ESP8266 WiFi模块
服务器·c语言·开发语言·数据结构·算法
倦王2 分钟前
力扣日刷26110
算法·leetcode·职场和发展
0和1的舞者2 分钟前
Python 中四种核心数据结构的用途和嵌套逻辑
数据结构·python·学习·知识
在路上看风景9 分钟前
01. 学习教程链接
学习
bodybo11 分钟前
搭建内网穿透服务器NPS
笔记
涛涛北京14 分钟前
【算法比较】
算法
yuniko-n14 分钟前
【牛客面试 TOP 101】链表篇(二)
算法·链表·职场和发展
少许极端15 分钟前
算法奇妙屋(二十三)-完全背包问题(动态规划)
java·算法·动态规划·完全背包
小猪佩奇TONY16 分钟前
Linux 内核学习(15) --- linux MMU 和 分页机制
linux·学习