学习笔记 - 知识图谱的符号表示方法

学习笔记 - 知识图谱的符号表示方法

说明:

  • 首次发表日期:2024-09-13
  • 个人阅读学习并摘录成笔记

知识表示的相关名词定义

以下内容摘录自 Knowledge Graphs Applied 2.3小节,然后AI翻译+人工润色。

  • 实体(Entities)---表示知识的核心概念,其他所有东西都是围绕其构建的。
    • 实体可以是物理实体(如化合物、疾病、患者、地点),也可以是抽象实体(如想法(idea)、情绪(sentiments)等概念)。
      实体可以具有不同的属性,如人名、城市的地理位置等。它们是知识库中的"一级公民",因为它们代表了整个知识库创建的原子信息(atomic information)。
  • 关系(Relationships)---定义实体之间的关系。例如,一个城市属于某个地区,一个基因编码一种蛋白质,一种疾病有某些症状等。关系可以具有属性,如日期、描述、概率等。
  • 本体(Ontologies)---定义特定领域的知识中存在的实体和关系类型,以及他们拥有的属性。
    例如,通过本体论和分类法(taxonomies),你可以定义实体的层级表示(hierarchical representation)(如医疗或教育机构),或者定义其属性(如一个组织必须有一个创始人、一个地址和一个伦理政策)。你可以确定这些属性的基数(Cardinality)(如一个组织可以有多个创始人和地址,但必须有一个唯一的伦理政策),或者定义组织内关系的性质(如传递性(transitivity),这意味着你的老板的老板也是你的老板)。
  • 目标和效用(Goals and utilities)---定义世界期望的和不期望的状态和代理的状态(states of agents)。在我们的医疗系统中,这些可能是身体的温度的降低(期望结果)或升高(不期望结果),患者运动功能的改善,红斑减少,血氧饱和度提升,等等。
  • 策略、控制规则和启发(Policies, control rules, and heuristics)---规定行动方式(Prescribe ways of acting)。例如,在开处方前检查患者是否对对乙酰氨基酚过敏,询问患者是否服用了化合物 X X X,因为它可能影响化合物 Y Y Y的效力等。

属性图

以下内容摘录自知识图谱导论 2.3.2小节。

属性图是图数据库Neo4J实现的图结构表示模型。

在属性图的术语中,属性图是由顶点(Vertex)​、边(Edge)​、标签(Label)​、关系类型和属性(Property)组成的有向图。

顶点(Vertex)也称为节点(Node)​,边(Edge)也称为关系(Relationship)​。

在属性图中,节点(Vertex/Node)和关系边(Edge/Relationship)是最重要的表达要素。节点上包含属性,属性可以以任何键值形式存在。

关系边(Edge/Relationship)连接节点(Vertex/Node),每条关系边都有拥有一个方向、一个标签、一个开始节点和一个结束节点。

关系边的方向的标签使得属性图具有语义化特征。和节点一样,关系边也可以有属性,即边属性,可以通过在关系边上增加属性给图算法提供有关边的元信息,如创建时间等。此外还可以通过边属性为边增加权重和特性等其他额外语义,如下图所示。

相关资源

RDF

RDF Schema

R2RML: RDB to RDF Mapping Language

将数据库的数据映射到我们自己定义的本体上

D2RQ

将关系型数据库(如MySQL)转换为RDF

SPARQL

Turtle (Terse RDF Triple Language)

OWL 2

Protégé: ontology编辑器

Apache Jena (知识推理)

相关推荐
修炼室1 天前
新手入门:KBQA核心评估指标(ACC/Hit@1/F1)全解析
知识图谱·kbqa
金井PRATHAMA2 天前
AI赋能训诂学:解码古籍智能新纪元
人工智能·自然语言处理·知识图谱
金井PRATHAMA3 天前
超越模仿,探寻智能的本源:从人类认知机制到下一代自然语言处理
人工智能·自然语言处理·知识图谱
Pocker_Spades_A3 天前
论文精读(五):面向链接预测的知识图谱表示学习方法综述
人工智能·链表·知识图谱
liliangcsdn4 天前
Leiden社区发现算法的学习和示例
学习·数据分析·知识图谱
千桐科技4 天前
qKnow 知识平台【开源版】发布 1.0.0 版本,全面落地知识管理与智能抽取能力
知识图谱·知识库·qknow·开源知识图谱·知识平台·java知识图谱·千知平台
liliangcsdn6 天前
结合prompt分析NodeRAG的build过程
java·服务器·人工智能·数据分析·知识图谱
金井PRATHAMA7 天前
自然语言处理深层语义分析中公理化体系的可行性、挑战与前沿进展
人工智能·自然语言处理·知识图谱
金井PRATHAMA9 天前
系统科学:结构、功能与层级探析
人工智能·自然语言处理·知识图谱
Hy行者勇哥10 天前
生成知识图谱与技能树的工具指南:PlantUML、Mermaid 和 D3.js
javascript·人工智能·知识图谱