【笔记】1.2 弹性变形

文章目录

一、弹性变形及实质

弹性变形:可逆的,应力应变服从胡克定律。

弹性变形模型:双原子模型。

两个原子 N 1 , N 2 N_1,N_2 N1,N2在平衡位置附近振动。

两个原子之间的作用力有引力和斥力,力的大小和距离有关系。

受到外力,原子之间的力的平衡被破坏,并形成新的平衡,在外力撤去后会恢复。

1表示引力,2表示斥力,3表示引力和斥力的合力。

二、胡克定律

弹性变形中,应力和应变之间保持线性关系------胡克定律。

1. 单向拉伸

σ = E ε \sigma=E\varepsilon σ=Eε

2. 剪切和扭转

τ = G γ \tau=G\gamma τ=Gγ

3. E、G和v的关系

G = E 2 ( 1 + ν ) G=\frac{E}{2(1+\nu)} G=2(1+ν)E

三、弹性模量

弹性模量(刚度):金属材料对于弹性变形的抗力,其值越大,在相同应力下产生的弹性变形越小。

弹性模量的影响因素

第二相

第二相的含量会影响弹性模量,但是其分布、大小不会。

铸铁石墨形态

塑性变形

弹性模量呈现出各向异性。

如果和塑性变形的方向平行,弹性模量增大;反之垂直,弹性模量减小。

温度

温度越高,原子间距越小,弹性模量越小。

影响不明显

合金化对晶格常数影响小。

热处理影响小。

四、弹性比功

弹性比功(弹性比能、应变比能):金属吸收液弹性变形能量的能力(对振动的吸收能力),衡量韧性。

弹性比功表示

用金属开始塑性变形前单位体积吸收的最大弹性变形功来表示。

也就是最大弹性应力和最大弹性应变的乘积的一半。

a e = σ e ε e 2 = σ e 2 2 E a_e=\frac{\sigma_e\varepsilon_e}{2}=\frac{\sigma^2_e}{2E} ae=2σeεe=2Eσe2

五、滞弹性

滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象,加载线和卸载线不重合。

弹性体

纯弹性体

产生大幅度变形后能完全恢复,不产生永久变形(塑性变形)的由长链分子组成的物体。

实际弹性体

生活中常见的,也具有发生大变形、可逆变形能力,但是产生不理想弹性行为,受温度、应力、老化等因素影响。

主要特征和机制

延迟反应

卸载后材料继续显示部分应变

内部结构

材料内部结构发生可逆变化(晶格重排、位错移动)

影响因素

  • 加载强度越大,持续时间越久,滞弹性越大
  • 温度促进塑性变形
  • 材料类型

弹性滞后环

弹性滞后环:加载线和卸载线形成的封闭回线。

弹性滞后环特点

  • 弹性变形阶段
  • 弹性应变路径不完全重合
  • 在非常小的应变范围内观察得到

弹性滞后环原因

加载中的分子或者原子产生微小位移,吸收应变能,且不完全释放。

弹性滞后环分类

单向加载弹性滞后环:在弹性区单向快速加载、卸载

交变加载弹性滞后环:在弹性区间快速施加交变载荷

交变加载塑限滞后环:交变载荷中最大应力超过弹性极限

塑性滞后环

塑性滞后环特征

  • 塑性变形
  • 不可逆塑性变形路径为闭合曲线
  • 面积表示吸收的能量

滞后环现象说明加载时金属的变形功大于卸载时金属的变形功,说明有一部分变形功被金属吸收,用滞后环面积来衡量。

滞后环的大小可以用来表示材料在震动下吸收振动的能力。

循环韧性/内耗/消振性

循环韧性(消振性):金属材料在振动下吸收不可逆变形功的能力。

内耗:金属材料在振动下吸收不可逆弹性功的能力。

循环韧性和内耗有区别也可以混用。

六、包申格效应

包申格效应:金属材料预加载少量塑性变形------卸载------同向加载,规定残余延伸强度增加;反向加载,规定残余延伸强度降低。

在下图中,预先发生2%的应变,然后卸载,然后正向加载,屈服强度从原先的300MPa出头升到了380MPa左右;反向加载的屈服强度下降到了100MPa左右。

包申格应变

包申格应变:在给定应力条件下,正向加载和反向加载的应变差,衡量包申格效应。

如下图,在给定应力下,正向加载的应变是b,反向加载的应变是c,包申格应变就是 β = b c \beta=bc β=bc。

包申格效应原因

包申格效应跟位错运动所受阻力有关。

金属预受载产生少量变形,导致位错前方的林位错密度增加,形成细胞缠结或胞状组织(很稳定)。

正向加载:由于前方林位错密度增加,位错难以前进,所以规定残余延伸强度增加。

反向加载:反向路径上林位错数量较少,位错可以移动较大距离。

包申格效应影响

包申格效应对承受疲劳载荷作用的机件寿命的影响:

  • 对于低周疲劳(循环应力大于屈服极限):
    β \beta β较大,形成滞后环面积较小,吸收能量少,疲劳寿命高
    β \beta β较小,形成滞后环面积较大,吸收能量多,疲劳寿命低

  • 对于高周疲劳(循环应力小于屈服极限):

    • β \beta β较大,形成滞后环面积较小,吸收能量少,疲劳寿命低
    • β \beta β较小,形成滞后环面积较大,吸收能量多,疲劳寿命高

消除包申格效应

  1. 大塑性变形:破碎晶粒
  2. 回火或再结晶退火
相关推荐
aramae16 分钟前
C++ -- STL -- vector
开发语言·c++·笔记·后端·visual studio
fen_fen1 小时前
学习笔记(32):matplotlib绘制简单图表-数据分布图
笔记·学习·matplotlib
饕餮争锋4 小时前
设计模式笔记_创建型_建造者模式
笔记·设计模式·建造者模式
萝卜青今天也要开心5 小时前
2025年上半年软件设计师考后分享
笔记·学习
吃货界的硬件攻城狮5 小时前
【STM32 学习笔记】SPI通信协议
笔记·stm32·学习
蓝染yy6 小时前
Apache
笔记
lxiaoj1116 小时前
Python文件操作笔记
笔记·python
半导体守望者7 小时前
ADVANTEST R4131 SPECTRUM ANALYZER 光谱分析仪
经验分享·笔记·功能测试·自动化·制造
啊我不会诶8 小时前
倍增法和ST算法 个人学习笔记&代码
笔记·学习·算法
逼子格9 小时前
振荡电路Multisim电路仿真实验汇总——硬件工程师笔记
笔记·嵌入式硬件·硬件工程·硬件工程师·硬件工程师真题·multisim电路仿真·震荡电流