使用 PyTorch 构建 MNIST 手写数字识别模型

引言

MNIST 数据集是一个经典的机器学习数据集,包含了 70,000 张手写数字图像,其中 60,000 张用于训练,10,000 张用于测试。每张图像都是 28x28 像素的灰度图像,并且已经被居中处理以减少预处理步骤。本文将介绍如何使用 PyTorch 构建一个简单的神经网络来识别 MNIST 数据集中的手写数字。

环境准备

首先确保你已经安装了 PyTorch 库。可以通过以下命令安装:

python 复制代码
pip install torch torchvision
数据加载与预处理
导入必要的库
python 复制代码
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
下载训练数据集
python 复制代码
training_data = datasets.MNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)
下载测试数据集
python 复制代码
test_data = datasets.MNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

解释:

  • 使用 datasets.MNIST 下载 MNIST 数据集,并将其保存在 "data" 目录下。
  • train=True 表示下载训练集,train=False 表示下载测试集。
  • download=True 表示如果数据集不存在,则下载数据集。
  • transform=ToTensor() 将图像数据转换为 PyTorch 张量。
  1. 展示部分手写数字图像

    python 复制代码
    from matplotlib import pyplot as plt
    
    figure = plt.figure()
    for i in range(9):
        img, label = training_data[i + 59000]
        figure.add_subplot(3, 3, i + 1)
        plt.title(label)
        plt.axis("off")
        plt.imshow(img.squeeze(), cmap="gray")
    plt.show()

    解释:

    • 使用 matplotlib 库展示一些手写数字图像。
数据加载器
创建数据加载器
python 复制代码
train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

解释:

  • 使用 DataLoader 将数据打包成批次,batch_size=64 表示每次迭代返回 64 个样本。
检查数据形状
python 复制代码
for X, y in test_dataloader:
    print(f"Shape of X [N,C,H,W]: {X.shape}")
    print(f"Shape of y: {y.shape} {y.dtype}")
    break

解释:

  • 查看数据的形状,确保数据已经被正确打包。
模型定义
定义神经网络模型
python 复制代码
class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.hidden1 = nn.Linear(28 * 28, 128)
        self.hidden2 = nn.Linear(128, 256)
        self.hidden3 = nn.Linear(256, 128)
        self.hidden4 = nn.Linear(128, 256)
        self.hidden5 = nn.Linear(256, 128)
        self.out = nn.Linear(128, 10)

    def forward(self, x):
        x = self.flatten(x)
        x = self.hidden1(x)
        x = torch.sigmoid(x)
        x = self.hidden2(x)
        x = torch.sigmoid(x)
        x = self.hidden3(x)
        x = torch.sigmoid(x)
        x = self.hidden4(x)
        x = torch.sigmoid(x)
        x = self.hidden5(x)
        x = torch.sigmoid(x)
        x = self.out(x)
        return x

解释:

  • 定义一个简单的多层感知器模型。
  • 使用 nn.Flatten 展平输入图像。
  • 多个全连接层 (nn.Linear) 和激活函数 (torch.sigmoid)。
实例化模型并移动到 GPU
python 复制代码
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else 'cpu'
print(f"Using {device} device")

model = NeuralNetwork().to(device)
print(model)

解释:

  • 检查是否有可用的 GPU 并将模型移动到 GPU 上。
训练与测试
定义损失函数和优化器
python 复制代码
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
定义训练函数
python 复制代码
def train(dataloader, model, loss_fn, optimizer):
    model.train()
    batch_size_num = 1
    for X, y in dataloader:
        X, y = X.to(device), y.to(device)
        pred = model(X)
        loss = loss_fn(pred, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        loss_value = loss.item()
        if batch_size_num % 100 == 0:
            print(f"loss: {loss_value:>7f} [number: {batch_size_num}]")
        batch_size_num += 1

解释:

  • 训练模型并计算损失。
  • 使用梯度下降更新权重。
  1. 定义测试函数

    python 复制代码
    def test(dataloader, model, loss_fn):
        size = len(dataloader.dataset)
        num_batches = len(dataloader)
        model.eval()
        test_loss, correct = 0, 0
        with torch.no_grad():
            for X, y in dataloader:
                X, y = X.to(device), y.to(device)
                pred = model(X)
                test_loss += loss_fn(pred, y).item()
                correct += (pred.argmax(1) == y).type(torch.float).sum().item()
            test_loss /= num_batches
            correct /= size
            print(f"Test result: \n Accuracy: {(100 * correct):>0.1f}%, Avg loss: {test_loss:>8f}")

    解释:

    • 测试模型并计算准确率和平均损失。
训练和测试模型
python 复制代码
epochs = 10
for t in range(epochs):
    print(f"Epoch {t + 1}\n--------------------------")
    train(train_dataloader, model, loss_fn, optimizer)
print("Done!")
test(test_dataloader, model, loss_fn)

解释:

  • 进行多次训练周期(epoch)。
  • 最后测试模型。
结果








总结

通过上述步骤,我们构建了一个简单的神经网络模型来识别 MNIST 数据集中的手写数字。使用 PyTorch 可以轻松地处理数据、定义模型、训练和测试模型。这个项目不仅展示了如何使用 PyTorch 进行图像识别,还介绍了如何利用 GPU 加速训练过程。希望这篇博客对你有所帮助!

相关推荐
德迅云安全—珍珍3 小时前
2026 年网络安全预测:AI 全面融入实战的 100+行业洞察
人工智能·安全·web安全
cnxy1884 小时前
围棋对弈Python程序开发完整指南:步骤4 - 提子逻辑和劫争规则实现
开发语言·python·机器学习
数新网络5 小时前
CyberScheduler —— 打破数据调度边界的核心引擎
人工智能
TheSumSt5 小时前
Python丨课程笔记Part3:语法进阶部分(控制结构与基础数据结构)
数据结构·笔记·python
Codebee5 小时前
Ooder框架8步编码流程实战 - DSM组件UI统计模块深度解析
人工智能
ha_lydms5 小时前
5、Spark函数_s/t
java·大数据·python·spark·数据处理·maxcompute·spark 函数
Deepoch5 小时前
智能升级新范式:Deepoc开发板如何重塑康复辅具产业生态
人工智能·具身模型·deepoc·智能轮椅
赋创小助手5 小时前
融合与跃迁:NVIDIA、Groq 与下一代 AI 推理架构的博弈与机遇
服务器·人工智能·深度学习·神经网络·语言模型·自然语言处理·架构
静听松涛1335 小时前
多智能体协作中的通信协议演化
人工智能
基咯咯6 小时前
Google Health AI发布MedASR:Conformer 医疗语音识别如何服务临床口述与对话转写
人工智能