数据分析-前期数据处理

复制代码
   今天找到一份关于医学体检的数据,在数据分析前期工作需要对数据做处理,在这里我们对原始数据做一些处理,将数据处理为可分析的标准数据。下一篇文章做数据的分析。数据想要获取的话可以到我的资源下载。

1 数据读取

python 复制代码
import pandas as pd
data = pd.read_excel(r'E:\学习\项目\数据分析\体检数据\dataset.xls')
print(data.head())

2 定义数据处理函数

数据中有"是否吸烟","是否饮酒","性别"是否,需要将其转化为0 1二分类数据,便于后期分析。

python 复制代码
# 替换特定的值
def replace_value1(row):
    if row['是否吸烟'] == '是': # ['是否吸烟'] == '是':
        return 1
    else:
        return 0
def replace_value2(row):
    if row['是否饮酒'] == '是':
        return 1
    else:
        return 0
def replace_value3(row):
    if row['性别'] == '男':
        return 1
    else:
        return 0

3 数据处理

数据处理,获取出生年月,从事工作时间,体检年份,年龄等

python 复制代码
data['出生年月'] = data['身份证号'].str[4:8]  ## 添加出生年月
data['从事工作年份'] = data['开始从事某工作年份'].astype(str).str[0:4]
data['是否吸烟'] = data.apply(replace_value1, axis=1)
data['是否饮酒'] = data.apply(replace_value2, axis=1)
data['性别'] = data.apply(replace_value3, axis=1)
# for name,group in data.groupby('体检年份'):  ## 体检年份包含字符字段
    # print(name,group)
data['体检年份'] = data['体检年份'].astype(str).replace('2015年','2015')
data['从事工作时间'] = data['体检年份'].astype(float) - data['从事工作年份'].astype(float)
data['年龄'] = data['体检年份'].astype(float) - data['出生年月'].astype(float)

4 清洗后的数据

干净的数据可以直接用来分析

python 复制代码
data_new = data.loc[:,['序号 ', '性别', '是否吸烟', '是否饮酒', '体检年份', '淋巴细胞计数','白细胞计数',  '血小板计数', '出生年月', '从事工作年份', '从事工作时间','年龄']]
print(data_new.head(20))

结果:

下一篇文章会给予处理后的数据进行数据分析。

相关推荐
奥特曼_ it1 天前
【数据分析+机器学习】基于机器学习的招聘数据分析可视化预测推荐系统(完整系统源码+数据库+开发笔记+详细部署教程)✅
笔记·数据挖掘·数据分析
2501_936146041 天前
传送带上罐体识别与分类_YOLOv26模型实现与优化_1
yolo·分类·数据挖掘
2501_936146041 天前
基于YOLOv26的纽约标志性建筑识别与分类系统实现与训练_2
yolo·分类·数据挖掘
zhangxl-jc1 天前
Doris 窗口函数之 LEAD 最佳实践
大数据·sql·数据分析
ID_180079054731 天前
得物商品详情API接口在数据分析中的应用
数据挖掘·数据分析
JZC_xiaozhong2 天前
什么是ETL?一文了解提取、转换与加载
数据库·数据仓库·数据分析·etl·数据一致性·数据孤岛解决方案·数据集成与应用集成
Faker66363aaa2 天前
工业仓储环境空盒自动检测与分类_YOLOv26_1
yolo·分类·数据挖掘
coding者在努力2 天前
美赛数学建模速成二:时间序列回归预测模型详细讲解(超全面版本附代码示例)
数学建模·数据挖掘·回归
KmjJgWeb2 天前
基于YOLOv26的眼距分类识别:如何实现精准的眼部特征分析
yolo·分类·数据挖掘
凌晨一点的秃头猪2 天前
ORB局部描述子提取
人工智能·分类·数据挖掘