数据分析-前期数据处理

复制代码
   今天找到一份关于医学体检的数据,在数据分析前期工作需要对数据做处理,在这里我们对原始数据做一些处理,将数据处理为可分析的标准数据。下一篇文章做数据的分析。数据想要获取的话可以到我的资源下载。

1 数据读取

python 复制代码
import pandas as pd
data = pd.read_excel(r'E:\学习\项目\数据分析\体检数据\dataset.xls')
print(data.head())

2 定义数据处理函数

数据中有"是否吸烟","是否饮酒","性别"是否,需要将其转化为0 1二分类数据,便于后期分析。

python 复制代码
# 替换特定的值
def replace_value1(row):
    if row['是否吸烟'] == '是': # ['是否吸烟'] == '是':
        return 1
    else:
        return 0
def replace_value2(row):
    if row['是否饮酒'] == '是':
        return 1
    else:
        return 0
def replace_value3(row):
    if row['性别'] == '男':
        return 1
    else:
        return 0

3 数据处理

数据处理,获取出生年月,从事工作时间,体检年份,年龄等

python 复制代码
data['出生年月'] = data['身份证号'].str[4:8]  ## 添加出生年月
data['从事工作年份'] = data['开始从事某工作年份'].astype(str).str[0:4]
data['是否吸烟'] = data.apply(replace_value1, axis=1)
data['是否饮酒'] = data.apply(replace_value2, axis=1)
data['性别'] = data.apply(replace_value3, axis=1)
# for name,group in data.groupby('体检年份'):  ## 体检年份包含字符字段
    # print(name,group)
data['体检年份'] = data['体检年份'].astype(str).replace('2015年','2015')
data['从事工作时间'] = data['体检年份'].astype(float) - data['从事工作年份'].astype(float)
data['年龄'] = data['体检年份'].astype(float) - data['出生年月'].astype(float)

4 清洗后的数据

干净的数据可以直接用来分析

python 复制代码
data_new = data.loc[:,['序号 ', '性别', '是否吸烟', '是否饮酒', '体检年份', '淋巴细胞计数','白细胞计数',  '血小板计数', '出生年月', '从事工作年份', '从事工作时间','年龄']]
print(data_new.head(20))

结果:

下一篇文章会给予处理后的数据进行数据分析。

相关推荐
wjykp10 小时前
5.脑电信号的预处理及数据分析要点
数据挖掘·数据分析
wang_yb11 小时前
折线图的奇妙变奏:四种创意可视化方法
数据分析·databook
90的程序爱好者11 小时前
Kettle多张表数据抽取操作步骤
数据库·数据仓库·数据挖掘
Aloudata13 小时前
破局 AI 幻觉:构建以 NoETL 语义编织为核心的 AI 就绪数据架构
人工智能·架构·数据分析·dataagent
Python毕设指南14 小时前
基于深度学习的旅游推荐系统
python·深度学习·数据分析·django·毕业设计·课程设计
2501_9436953316 小时前
高职仓储分拣转优化分析中数据分析的作用
数据挖掘·数据分析
Data-Miner16 小时前
类似Pandas AI的几个数据分析处理智能体介绍
人工智能·数据分析·pandas
QQ129584550416 小时前
SSAS - 发货主题数据第1阶
数据仓库·数据分析
Brduino脑机接口技术答疑17 小时前
脑机接口数据处理连载(九) 经典分类算法(一):支持向量机(SVM)数据建模——基于脑机接口(BCI)运动想象任务实战
支持向量机·分类·数据挖掘
咋吃都不胖lyh18 小时前
GBDT 回归任务生成过程(逐步计算演示)
人工智能·数据挖掘·回归