数据分析-前期数据处理

复制代码
   今天找到一份关于医学体检的数据,在数据分析前期工作需要对数据做处理,在这里我们对原始数据做一些处理,将数据处理为可分析的标准数据。下一篇文章做数据的分析。数据想要获取的话可以到我的资源下载。

1 数据读取

python 复制代码
import pandas as pd
data = pd.read_excel(r'E:\学习\项目\数据分析\体检数据\dataset.xls')
print(data.head())

2 定义数据处理函数

数据中有"是否吸烟","是否饮酒","性别"是否,需要将其转化为0 1二分类数据,便于后期分析。

python 复制代码
# 替换特定的值
def replace_value1(row):
    if row['是否吸烟'] == '是': # ['是否吸烟'] == '是':
        return 1
    else:
        return 0
def replace_value2(row):
    if row['是否饮酒'] == '是':
        return 1
    else:
        return 0
def replace_value3(row):
    if row['性别'] == '男':
        return 1
    else:
        return 0

3 数据处理

数据处理,获取出生年月,从事工作时间,体检年份,年龄等

python 复制代码
data['出生年月'] = data['身份证号'].str[4:8]  ## 添加出生年月
data['从事工作年份'] = data['开始从事某工作年份'].astype(str).str[0:4]
data['是否吸烟'] = data.apply(replace_value1, axis=1)
data['是否饮酒'] = data.apply(replace_value2, axis=1)
data['性别'] = data.apply(replace_value3, axis=1)
# for name,group in data.groupby('体检年份'):  ## 体检年份包含字符字段
    # print(name,group)
data['体检年份'] = data['体检年份'].astype(str).replace('2015年','2015')
data['从事工作时间'] = data['体检年份'].astype(float) - data['从事工作年份'].astype(float)
data['年龄'] = data['体检年份'].astype(float) - data['出生年月'].astype(float)

4 清洗后的数据

干净的数据可以直接用来分析

python 复制代码
data_new = data.loc[:,['序号 ', '性别', '是否吸烟', '是否饮酒', '体检年份', '淋巴细胞计数','白细胞计数',  '血小板计数', '出生年月', '从事工作年份', '从事工作时间','年龄']]
print(data_new.head(20))

结果:

下一篇文章会给予处理后的数据进行数据分析。

相关推荐
自学互联网3 小时前
Fine Bi数据可视化day01:连接到数据
数据分析
腾讯WeTest3 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
阿里云大数据AI技术4 小时前
EMR Serverless Stella 1.0 技术分享:StarRocks企业级版本内核重大突破
数据分析
--fancy7 小时前
如何使用Tushare构建自己的本地量化投研数据库
数据库·sql·数据分析
qq_225891746610 小时前
基于Python+Django餐饮评论大数据分析与智能推荐系统 毕业论文
开发语言·后端·python·信息可视化·数据分析·django
龙腾AI白云11 小时前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
xuehaikj12 小时前
文档类型识别与分类_yolo13-C3k2-SFSConv实现详解
人工智能·数据挖掘
蒋星熠18 小时前
实证分析:数据驱动决策的技术实践指南
大数据·python·数据挖掘·数据分析·需求分析
谅望者1 天前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
观远数据1 天前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售