数据分析-前期数据处理

复制代码
   今天找到一份关于医学体检的数据,在数据分析前期工作需要对数据做处理,在这里我们对原始数据做一些处理,将数据处理为可分析的标准数据。下一篇文章做数据的分析。数据想要获取的话可以到我的资源下载。

1 数据读取

python 复制代码
import pandas as pd
data = pd.read_excel(r'E:\学习\项目\数据分析\体检数据\dataset.xls')
print(data.head())

2 定义数据处理函数

数据中有"是否吸烟","是否饮酒","性别"是否,需要将其转化为0 1二分类数据,便于后期分析。

python 复制代码
# 替换特定的值
def replace_value1(row):
    if row['是否吸烟'] == '是': # ['是否吸烟'] == '是':
        return 1
    else:
        return 0
def replace_value2(row):
    if row['是否饮酒'] == '是':
        return 1
    else:
        return 0
def replace_value3(row):
    if row['性别'] == '男':
        return 1
    else:
        return 0

3 数据处理

数据处理,获取出生年月,从事工作时间,体检年份,年龄等

python 复制代码
data['出生年月'] = data['身份证号'].str[4:8]  ## 添加出生年月
data['从事工作年份'] = data['开始从事某工作年份'].astype(str).str[0:4]
data['是否吸烟'] = data.apply(replace_value1, axis=1)
data['是否饮酒'] = data.apply(replace_value2, axis=1)
data['性别'] = data.apply(replace_value3, axis=1)
# for name,group in data.groupby('体检年份'):  ## 体检年份包含字符字段
    # print(name,group)
data['体检年份'] = data['体检年份'].astype(str).replace('2015年','2015')
data['从事工作时间'] = data['体检年份'].astype(float) - data['从事工作年份'].astype(float)
data['年龄'] = data['体检年份'].astype(float) - data['出生年月'].astype(float)

4 清洗后的数据

干净的数据可以直接用来分析

python 复制代码
data_new = data.loc[:,['序号 ', '性别', '是否吸烟', '是否饮酒', '体检年份', '淋巴细胞计数','白细胞计数',  '血小板计数', '出生年月', '从事工作年份', '从事工作时间','年龄']]
print(data_new.head(20))

结果:

下一篇文章会给予处理后的数据进行数据分析。

相关推荐
总有刁民想爱朕ha24 分钟前
车牌模拟生成器:Python3.8+Opencv代码实现与商业应用前景(C#、python 开发包SDK)
开发语言·python·数据挖掘
Stestack2 小时前
人工智能常见分类
人工智能·分类·数据挖掘
华科云商xiao徐6 小时前
告别IP被封!分布式爬虫的“隐身”与“分身”术
爬虫·数据挖掘·数据分析
未来之窗软件服务12 小时前
商业软件开发入门到精通之路-东方仙盟
人工智能·数据挖掘·仙盟创梦ide·东方仙盟·商业软件开发入门
没有梦想的咸鱼185-1037-166317 小时前
【高分论文密码】大尺度空间模拟预测与数字制图
信息可视化·数据分析·r语言
民乐团扒谱机21 小时前
逻辑回归算法干货详解:从原理到 MATLAB 可视化实现
数学建模·matlab·分类·数据挖掘·回归·逻辑回归·代码分享
计算机毕业设计指导1 天前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
m0_575046341 天前
FPGA数据流分析
数据分析·fpga·数据流分析
思辨共悟1 天前
Python的价值:突出在数据分析与挖掘
python·数据分析
roman_日积跬步-终至千里1 天前
【软件架构设计(19)】软件架构评估二:软件架构分析方法分类、质量属性场景、软件评估方法发展历程
人工智能·分类·数据挖掘