数据分析-前期数据处理

复制代码
   今天找到一份关于医学体检的数据,在数据分析前期工作需要对数据做处理,在这里我们对原始数据做一些处理,将数据处理为可分析的标准数据。下一篇文章做数据的分析。数据想要获取的话可以到我的资源下载。

1 数据读取

python 复制代码
import pandas as pd
data = pd.read_excel(r'E:\学习\项目\数据分析\体检数据\dataset.xls')
print(data.head())

2 定义数据处理函数

数据中有"是否吸烟","是否饮酒","性别"是否,需要将其转化为0 1二分类数据,便于后期分析。

python 复制代码
# 替换特定的值
def replace_value1(row):
    if row['是否吸烟'] == '是': # ['是否吸烟'] == '是':
        return 1
    else:
        return 0
def replace_value2(row):
    if row['是否饮酒'] == '是':
        return 1
    else:
        return 0
def replace_value3(row):
    if row['性别'] == '男':
        return 1
    else:
        return 0

3 数据处理

数据处理,获取出生年月,从事工作时间,体检年份,年龄等

python 复制代码
data['出生年月'] = data['身份证号'].str[4:8]  ## 添加出生年月
data['从事工作年份'] = data['开始从事某工作年份'].astype(str).str[0:4]
data['是否吸烟'] = data.apply(replace_value1, axis=1)
data['是否饮酒'] = data.apply(replace_value2, axis=1)
data['性别'] = data.apply(replace_value3, axis=1)
# for name,group in data.groupby('体检年份'):  ## 体检年份包含字符字段
    # print(name,group)
data['体检年份'] = data['体检年份'].astype(str).replace('2015年','2015')
data['从事工作时间'] = data['体检年份'].astype(float) - data['从事工作年份'].astype(float)
data['年龄'] = data['体检年份'].astype(float) - data['出生年月'].astype(float)

4 清洗后的数据

干净的数据可以直接用来分析

python 复制代码
data_new = data.loc[:,['序号 ', '性别', '是否吸烟', '是否饮酒', '体检年份', '淋巴细胞计数','白细胞计数',  '血小板计数', '出生年月', '从事工作年份', '从事工作时间','年龄']]
print(data_new.head(20))

结果:

下一篇文章会给予处理后的数据进行数据分析。

相关推荐
lilye6635 分钟前
精益数据分析(19/126):走出数据误区,拥抱创业愿景
前端·人工智能·数据分析
过期的秋刀鱼!35 分钟前
数据分析之技术干货业务价值 powerquery 分组排序后取TOP
数据挖掘·数据分析·excel·数据清洗·分组排序·powerquery·电商货品分析
郭不耐2 小时前
DeepSeek智能时空数据分析(五):基于区域人口数量绘制地图散点-大模型搜集数据NL2SQL加工数据
数据分析·aigc·时序数据库·数据可视化·大屏端
郭不耐5 小时前
DeepSeek智能时空数据分析(四):绘制行政区域并定制样式
信息可视化·数据挖掘·数据分析·数据可视化
时序之心6 小时前
清华团队提出时序聚类数据库内高效方案,已被SIGMOD 2025接收
数据库·数据挖掘·聚类
没有梦想的咸鱼185-1037-16637 小时前
【降尺度】ChatGPT+DeepSeek+python+CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
python·chatgpt·数据分析
lilye667 小时前
精益数据分析(26/126):依据商业模式确定关键指标
大数据·人工智能·数据分析
七七知享9 小时前
深入探索Python Pandas:解锁数据分析的无限可能
python·程序人生·程序员·数据挖掘·数据分析·pandas·个人开发
梦想画家9 小时前
使用 LLM助手进行 Python 数据可视化
python·数据分析·大模型应用
LeeZhao@10 小时前
【数据挖掘】时间序列预测-常用序列预测模型
人工智能·自然语言处理·数据挖掘·agi