Spark处理结构化数据:DataFrame、DataSet、SparkSQL

Spark处理结构化数据:DataFrame、DataSet、SparkSQL

1. DataFrame:

  • 表示分布式数据集合,以表格的形式存储数据,具有行和列。
  • 支持丰富的操作和转换(如过滤、选择、聚合等)。
  • 提供了对数据的高级抽象,简化了对复杂数据处理的操作。













2. DataSet:

  • 结合了RDD的强类型特性和DataFrame的优化特性。
  • 提供了类型安全的操作,编译时会检查类型错误。
  • 可以用来处理需要严格类型控制的复杂数据。

3. SparkSQL:

  • 提供SQL查询接口来处理结构化数据。




















  • 允许用SQL语句直接对DataFrame进行操作。
  • 支持通过SQL API进行复杂的查询和数据分析。

它们之间的关系:

  • DataFrameDataSet 的一个特定实现,数据类型为 Row
  • DataSet 可以通过 toDF() 转换为 DataFrame,反之亦然。
相关推荐
Lx35219 分钟前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop
激昂网络1 小时前
android kernel代码 common-android13-5.15 下载 编译
android·大数据·elasticsearch
绝缘体11 小时前
折扣大牌点餐api接口对接适合本地生活吗?
大数据·网络·搜索引擎·pygame
君不见,青丝成雪2 小时前
浅看架构理论(二)
大数据·架构
武子康2 小时前
大数据-74 Kafka 核心机制揭秘:副本同步、控制器选举与可靠性保障
大数据·后端·kafka
程序员不迷路2 小时前
Kafka学习
分布式·kafka
北i3 小时前
ZooKeeper 一致性模型解析:线性一致性与顺序一致性的平衡
分布式·zookeeper·云原生
IT技术小密圈3 小时前
图解分布式锁: 5分钟搞懂分布式锁
分布式·后端·面试
bing_1583 小时前
kafka 生产者是如何发送消息的?
分布式·kafka
IT毕设梦工厂5 小时前
大数据毕业设计选题推荐-基于大数据的1688商品类目关系分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·毕业设计·源码·数据可视化·bigdata·选题推荐