G1: Yunli‘s Subarray Queries (easy version)(1900)(定长区间众数)

思路:因为是定长区间,因此我们可以利用滑动窗口维护定长区间的众数的数量

AC代码:

cpp 复制代码
#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
const int MOD = 998244353;
const int N = 2e5 + 10;

ll a[N];
ll b[N];//前i个数的相同的数的最大值
int main()
{
	
	int t;
	cin >> t;
	while(t --){
		ll n, k, q;
		cin >> n >> k >> q;
		for(int i = 1; i <= n; i ++)
		{
			cin >> a[i];
			a[i] -= i;
		}
		//求每个区间为k的区间众数的数量
		//看到定长想到滑动区间
		map<ll, ll>ma, cnt;//记录数量
		for(int i = 1; i <= n; i ++)
		{
			if(cnt.count(ma[a[i]]))//相当于对右边界进行操作
			{
				cnt[ma[a[i]]] -= 1;
				if(!cnt[ma[a[i]]]) cnt.erase(ma[a[i]]);
			}
			ma[a[i]] += 1;
			cnt[ma[a[i]]] += 1;
			//前k个数还没到达窗口最远
			if(i < k) continue;
			//因为区间长度已经确定为k了,因此我们确定了左区间,右区间也随之确定了
			b[i - k + 1] = cnt.rbegin() ->first;//代表反向开始的第一个元素,即众数
		//	cout << b[1] << "sss" << endl;
			cnt[ma[a[i - k + 1]]] -= 1;//因为开始窗口滑动了因此也需要考虑左边界了
			if(!cnt[ma[a[i - k + 1]]]) cnt.erase(ma[a[i - k + 1]]);
			ma[a[i - k + 1]]  -= 1;//左边界ma也要参与了
			if(ma[a[i - k + 1]]) cnt[ma[a[i - k + 1]]] += 1;
		}
		while(q --){
			ll l, r;
			cin >> l >> r;
			cout << k - b[l] << endl;
		}
	}
	return 0;
}
相关推荐
LYFlied15 分钟前
【每日算法】 LeetCode 56. 合并区间
前端·算法·leetcode·面试·职场和发展
艾醒25 分钟前
大模型原理剖析——多头潜在注意力 (MLA) 详解
算法
艾醒29 分钟前
大模型原理剖析——DeepSeek-V3深度解析:671B参数MoE大模型的技术突破与实践
算法
jifengzhiling1 小时前
零极点对消:原理、作用与风险
人工智能·算法
鲨莎分不晴2 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
XFF不秃头3 小时前
力扣刷题笔记-全排列
c++·笔记·算法·leetcode
菜鸟233号3 小时前
力扣669 修剪二叉搜索树 java实现
java·数据结构·算法·leetcode
光羽隹衡3 小时前
机械学习逻辑回归——银行贷款案例
算法·机器学习·逻辑回归
能源系统预测和优化研究4 小时前
创新点解读:基于非线性二次分解的Ridge-RF-XGBoost时间序列预测(附代码实现)
人工智能·深度学习·算法