G1: Yunli‘s Subarray Queries (easy version)(1900)(定长区间众数)

思路:因为是定长区间,因此我们可以利用滑动窗口维护定长区间的众数的数量

AC代码:

cpp 复制代码
#include<bits/stdc++.h>

using namespace std;

typedef long long ll;
const int MOD = 998244353;
const int N = 2e5 + 10;

ll a[N];
ll b[N];//前i个数的相同的数的最大值
int main()
{
	
	int t;
	cin >> t;
	while(t --){
		ll n, k, q;
		cin >> n >> k >> q;
		for(int i = 1; i <= n; i ++)
		{
			cin >> a[i];
			a[i] -= i;
		}
		//求每个区间为k的区间众数的数量
		//看到定长想到滑动区间
		map<ll, ll>ma, cnt;//记录数量
		for(int i = 1; i <= n; i ++)
		{
			if(cnt.count(ma[a[i]]))//相当于对右边界进行操作
			{
				cnt[ma[a[i]]] -= 1;
				if(!cnt[ma[a[i]]]) cnt.erase(ma[a[i]]);
			}
			ma[a[i]] += 1;
			cnt[ma[a[i]]] += 1;
			//前k个数还没到达窗口最远
			if(i < k) continue;
			//因为区间长度已经确定为k了,因此我们确定了左区间,右区间也随之确定了
			b[i - k + 1] = cnt.rbegin() ->first;//代表反向开始的第一个元素,即众数
		//	cout << b[1] << "sss" << endl;
			cnt[ma[a[i - k + 1]]] -= 1;//因为开始窗口滑动了因此也需要考虑左边界了
			if(!cnt[ma[a[i - k + 1]]]) cnt.erase(ma[a[i - k + 1]]);
			ma[a[i - k + 1]]  -= 1;//左边界ma也要参与了
			if(ma[a[i - k + 1]]) cnt[ma[a[i - k + 1]]] += 1;
		}
		while(q --){
			ll l, r;
			cin >> l >> r;
			cout << k - b[l] << endl;
		}
	}
	return 0;
}
相关推荐
白云千载尽1 小时前
leetcode 912.排序数组
算法·leetcode·职场和发展
哆啦刘小洋1 小时前
Tips:预封装约束的状态定义
算法
代码充电宝1 小时前
LeetCode 算法题【简单】290. 单词规律
java·算法·leetcode·职场和发展·哈希表
Juan_20121 小时前
P1040题解
c++·算法·动态规划·题解
Onesoft%J1ao1 小时前
C++竞赛递推算法-斐波那契数列常见题型与例题详解
c++·算法·动态规划·递推·信息学奥赛
以己之2 小时前
NC313 两个数组的交集
算法·哈希算法
Brookty2 小时前
【算法】前缀和
java·学习·算法·前缀和·动态规划
And_Ii2 小时前
LeetCode 3397. 执行操作后不同元素的最大数量
数据结构·算法·leetcode
额呃呃2 小时前
leetCode第33题
数据结构·算法·leetcode
隐语SecretFlow2 小时前
【隐语SecretFlow用户案例】亚信科技构建统一隐私计算框架探索实践
科技·算法·安全·隐私计算·隐私求交·开源隐私计算